cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003166 Numbers whose square in base 2 is a palindrome.

Original entry on oeis.org

0, 1, 3, 4523, 11991, 18197, 141683, 1092489, 3168099, 6435309, 12489657, 17906499, 68301841, 295742437, 390117873, 542959199, 4770504939, 17360493407, 73798050723, 101657343993, 107137400475, 202491428745, 1615452642807, 4902182461643, 9274278357017, 12863364360297
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that k^2 is in A006995.
The only palindromes in this sequence are 0, 1, and 3. See AMM problem 11922. - Max Alekseyev, Oct 22 2022

Examples

			3^2 = 9 = 1001_2, a palindrome.
4523^2 = 20457529 = 1001110000010100000111001_2.
		

References

  • G. J. Simmons, On palindromic squares of non-palindromic numbers, J. Rec. Math., 5 (No. 1, 1972), 11-19.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002778 (base 10 analog), A029983 (the actual squares). In binary: A262595, A262596.
Cf. A006995.

Programs

  • Mathematica
    Do[c = RealDigits[n^2, 2][[1]]; If[c == Reverse[c], Print[n]], {n, 0, 10^9}]
  • PARI
    is(n)=my(b=binary(n^2)); b==Vecrev(b) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from itertools import count, islice
    def A003166_gen(): # generator of terms
        return filter(lambda k: (s:=bin(k**2)[2:])[:(t:=(len(s)+1)//2)]==s[:-t-1:-1],count(0))
    A003166_list = list(islice(A003166_gen(),10)) # Chai Wah Wu, Jun 23 2022

Extensions

a(16) = 4770504939 found by Patrick De Geest, May 15 1999
a(17)-a(31) from Jon E. Schoenfield, May 08 2009
a(32) = 285000288617375,
a(33) = 301429589329949,
a(34) = 1178448744881657 from Don Knuth, Jan 28 2013 [who doublechecked the previous results and searched up to 2^104]