A003173 Heegner numbers: imaginary quadratic fields with unique factorization (or class number 1).
1, 2, 3, 7, 11, 19, 43, 67, 163
Offset: 1
References
- John H. Conway and Richard K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 224.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979, p. 213.
- Wilfred W. J. Hulsbergen, Conjectures in Arithmetic Algebraic Geometry, Vieweg, 1994, p. 8.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 143.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Harold M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 295.
Links
- Aram Bingham, Ternary arithmetic, factorization, and the class number one problem, arXiv:2002.02059 [math.NT], 2020. See p. 9.
- Kalyan Chakraborty, Azizul Hoque and Richa Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
- Alex Clark and Brady Haran, 163 and Ramanujan Constant, Numberphile video, 2012.
- Noam Elkies, The Klein quartic in number theory, in: S. Levy, ed., The Eightfold Way, Cambridge Univ. Press, 1999, pp. 51-101. MR1722413 (2001a:11103). See page 93.
- Yang-Hui He and John McKay, Sporadic and Exceptional, arXiv:1505.06742 [math.AG], 2015.
- Kurt Heegner, Diophantische Analysis und Modulfunktionen, Matematische Zaitschrift, Vol. 56 (1952), pp. 227-253.
- John Myron Masley, Where are the number fields with small class number?, in: M. B. Nathanson (ed.), Number Theory Carbondale 1979, Lect. Notes Math., Vol. 751, Springer, Berlin, Heidelberg, 1982, pp. 221-242.
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
- Eric Weisstein's World of Mathematics, Gauss's Class Number Problem and Heegner Number.
- Wikipedia, Heegner number.
- Wikipedia, Stark-Heegner theorem.
- Index entries for sequences related to quadratic fields
Crossrefs
Programs
-
Mathematica
Union[ Select[ -NumberFieldDiscriminant[ Sqrt[-#]]& /@ Range[200], NumberFieldClassNumber[ Sqrt[-#]] == 1 & ] /. {4 -> 1, 8 -> 2}] (* Jean-François Alcover, Jan 04 2012 *) heegnerNums = {}; Do[s = Sum[j * KroneckerSymbol[j, k], {j, 1, k}]; If[PrimeQ[s], AppendTo[heegnerNums, {s, k}]], {k, 1, 10000}]; heegnerNums (* Richard R. Forberg, Jul 18 2016 *)
-
PARI
select(n->qfbclassno(-n*if(n%4==3,1,4))==1, vector(200,i,i)) \\ Charles R Greathouse IV, Nov 20 2012
Comments