cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003185 a(n) = (4*n+1)*(4*n+5).

Original entry on oeis.org

5, 45, 117, 221, 357, 525, 725, 957, 1221, 1517, 1845, 2205, 2597, 3021, 3477, 3965, 4485, 5037, 5621, 6237, 6885, 7565, 8277, 9021, 9797, 10605, 11445, 12317, 13221, 14157, 15125, 16125, 17157, 18221
Offset: 0

Views

Author

Keywords

Comments

Bisection of A078371. - Lambert Klasen (Lambert.Klasen(AT)gmx.net), Nov 19 2004
a(n) is the smallest number not in the sequence such that Sum_{k=0..n} 1/a(k) has a denominator 4*n+5. - Derek Orr, Jun 21 2015
a(n) is the number of 2 X 2 matrices with all elements in {-n,..,0,..,n} with permanent = determinant^n except for a(0), where a(0)=0, but A003185(0) = 5. - Indranil Ghosh, Jan 04 2017

Crossrefs

Programs

  • Mathematica
    Table[(4n+1)(4n+5),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{5,45,117},40] (* Harvey P. Dale, Jan 27 2013 *)
  • PARI
    a(n) = (4*n+1)*(4*n+5); \\ Michel Marcus, Jan 17 2023
    
  • Python
    a= lambda n: (4*n+1)*(4*n+5) # Indranil Ghosh, Jan 04 2017

Formula

1 = Sum_{n>=0} 4/a(n). Sum_{k=0..n} 4/a(k) = 4(n+1)/[4(n+1)+1]. Integral_{x=0..1} 1/(1 + x^4) = Sum_{n>=0} 4/a(2*n) = Sum_{n>=0} (-1)^n/(4n+1). - Gary W. Adamson, Jun 18 2003
1 = 1/5 + Sum_{n>=1} 16/a(n); with partial sums (4n+1)/(4n+5). - Gary W. Adamson, Jun 18 2003
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (-5-30*x+3*x^2)/(-1+x)^3.
a(3*n) = A001513(2*n).
Conjecture: a(n+1)-a(n) = A063164(n+2). (End)
a(n) = 32*n + a(n-1) + 8 (with a(0)=5). - Vincenzo Librandi, Nov 12 2010
a(0)=5, a(1)=45, a(2)=117, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 27 2013
Sum_{n>=0} (-1)^n/a(n) = (log(2*sqrt(2)+3) + Pi)/(8*sqrt(2)) - 1/4. - Amiram Eldar, Oct 08 2023