A003185 a(n) = (4*n+1)*(4*n+5).
5, 45, 117, 221, 357, 525, 725, 957, 1221, 1517, 1845, 2205, 2597, 3021, 3477, 3965, 4485, 5037, 5621, 6237, 6885, 7565, 8277, 9021, 9797, 10605, 11445, 12317, 13221, 14157, 15125, 16125, 17157, 18221
Offset: 0
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[(4n+1)(4n+5),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{5,45,117},40] (* Harvey P. Dale, Jan 27 2013 *)
-
PARI
a(n) = (4*n+1)*(4*n+5); \\ Michel Marcus, Jan 17 2023
-
Python
a= lambda n: (4*n+1)*(4*n+5) # Indranil Ghosh, Jan 04 2017
Formula
1 = Sum_{n>=0} 4/a(n). Sum_{k=0..n} 4/a(k) = 4(n+1)/[4(n+1)+1]. Integral_{x=0..1} 1/(1 + x^4) = Sum_{n>=0} 4/a(2*n) = Sum_{n>=0} (-1)^n/(4n+1). - Gary W. Adamson, Jun 18 2003
1 = 1/5 + Sum_{n>=1} 16/a(n); with partial sums (4n+1)/(4n+5). - Gary W. Adamson, Jun 18 2003
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (-5-30*x+3*x^2)/(-1+x)^3.
a(3*n) = A001513(2*n).
Conjecture: a(n+1)-a(n) = A063164(n+2). (End)
a(n) = 32*n + a(n-1) + 8 (with a(0)=5). - Vincenzo Librandi, Nov 12 2010
a(0)=5, a(1)=45, a(2)=117, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jan 27 2013
Sum_{n>=0} (-1)^n/a(n) = (log(2*sqrt(2)+3) + Pi)/(8*sqrt(2)) - 1/4. - Amiram Eldar, Oct 08 2023
Comments