cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003234 Numbers k such that A003231(A001950(k)) = A001950(A003231(k)) - 1.

Original entry on oeis.org

3, 8, 11, 16, 19, 21, 24, 29, 32, 37, 42, 45, 50, 53, 55, 58, 63, 66, 71, 74, 76, 79, 84, 87, 92, 97, 100, 105, 108, 110, 113, 118, 121, 126, 129, 131, 134, 139, 142, 144, 147, 152, 155, 160, 163, 165, 168, 173, 176, 181, 186, 189, 194, 197, 199, 202, 207
Offset: 1

Views

Author

Keywords

Comments

See 3.3 p. 344 in Carlitz link. - Michel Marcus, Feb 02 2014
This is the function named s in [Carlitz]. - Eric M. Schmidt, Aug 14 2014

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003234 n = a003234_list !! (n-1)
    a003234_list = [x | x <- [1..],
                        a003231 (a001950 x) == a001950 (a003231 x) - 1]
    -- Reinhard Zumkeller, Oct 03 2014
    
  • Maple
    A003234 := proc(n)
        option remember;
        if n =1 then
            3;
        else
            for a from procname(n-1)+1 do
                if A003231(A001950(a)) = A001950(A003231(a))-1 then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003234(n),n=1..80) ; # R. J. Mathar, Jul 16 2024
  • Mathematica
    a3[n_] := Floor[n (Sqrt[5] + 3)/2];
    a5[n_] := Floor[n (Sqrt[5] + 5)/2];
    Select[Range[300], a5[a3[#]] == a3[a5[#]]-1&] (* Jean-François Alcover, Jul 31 2018 *)
  • PARI
    A001950(n) = floor(n*(sqrt(5)+3)/2);
    A003231(n) = floor(n*(sqrt(5)+5)/2);
    isok(n) = A003231(A001950(n)) == A001950(A003231(n)) - 1; \\ Michel Marcus, Feb 02 2014
    
  • Python
    from math import isqrt
    from itertools import count, islice
    def A003234_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:((m:=(n+isqrt(5*n**2)>>1)+n)+isqrt(5*m**2)>>1)+(m<<1)+1==((k:=(n+isqrt(5*n**2)>>1)+(n<<1))+isqrt(5*k**2)>>1)+k,count(max(1,startvalue)))
    A003234_list = list(islice(A003234_gen(),30)) # Chai Wah Wu, Sep 02 2022

Extensions

More terms from Michel Marcus, Feb 02 2014
Definition from Michel Marcus moved from comment to name by Eric M. Schmidt, Aug 17 2014