cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003267 Central Fibonomial coefficients.

Original entry on oeis.org

1, 1, 6, 60, 1820, 136136, 27261234, 14169550626, 19344810307020, 69056421075989160, 645693859487298425256, 15803204856220738696714416, 1012673098498882654470985390406, 169885799961166470686816475170920550, 74614732877610423587753604318734054624100
Offset: 0

Views

Author

Keywords

Comments

The largest prime factor of a(n): 1, 1, 3, 5, 13, 17, 89, 233, 233, 1597, 1597, 1597, 28657, 28657, 28657, 514229, 514229, 514229, 514229, 514229, 514229, 514229, 433494437, 433494437, 2971215073, ..., . The union of the above list is: 1, 3, 5, 13, 17, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 14736206161, 46165371073, 92180471494753, 99194853094755497, ... . - Robert G. Wilson v, Dec 04 2009

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A003268. Cf. A008341.

Programs

  • Maple
    with(combinat): a := n -> product(fibonacci(n+k+1), k=0..n-1)/product(fibonacci(k), k=1..n):
    seq(a(n), n=0..20);
  • Mathematica
    f[n_] := Product[Fibonacci[n + k + 1]/Fibonacci[k + 1], {k, 0, n - 1}]; Array[f, 14, 0] (* Robert G. Wilson v, Dec 04 2009 *)
    Flatten[{1, Table[Round[-(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n])], {n,1,15}]}]  (* Vaclav Kotesovec, Apr 10 2015 after Eric W. Weisstein *)
    Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
  • PARI
    a(n)=prod(k=0,n-1,fibonacci(n+k+1))/prod(k=1,n,fibonacci(k))
    for(n=0,14,print1(a(n),","))

Formula

For n > 0, a(n) = (-1)^floor(n/2)*det(M(n, -1))/det(M(n, 0)) where M(n, m) is the n X n matrix with coefficient 1/F(i+j+m), i=1..n, j=1..n. - Benoit Cloitre, Jun 05 2004
For n > 0, a(n) = -(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n]). - Eric W. Weisstein, Dec 08 2009
a(n) ~ phi^(n^2) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = 1.22674201072035324441763... is the Fibonacci factorial constant. - Vaclav Kotesovec, Apr 10 2015
a(n) = phi^(n^2) * C(2*n, n)A001622%20is%20the%20golden%20ratio,%20and%20C(n,%20k)_q%20is%20the%20q-binomial%20coefficient.%20-%20_Vladimir%20Reshetnikov">{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - _Vladimir Reshetnikov, Sep 26 2016
a(n) = A010048(2*n, n). - Vladimir Reshetnikov, Sep 27 2016

Extensions

More terms from Sascha Kurz and Rick L. Shepherd, Mar 24 2002
a(1) = 1 added by N. J. A. Sloane, Dec 06 2009
Typo in second formula corrected by Vaclav Kotesovec, Apr 10 2015
Offset corrected from 1 to 0, formulae and programs are updated accordingly by Vladimir Reshetnikov, Sep 27 2016