cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A092779 Exponent of 2 in central fibonomial coefficient A003267.

Original entry on oeis.org

0, 0, 1, 2, 2, 3, 1, 1, 2, 3, 3, 4, 1, 1, 2, 3, 3, 4, 2, 2, 3, 4, 4, 5, 1, 1, 2, 3, 3, 4, 2, 2, 3, 4, 4, 5, 2, 2, 3, 4, 4, 5, 3, 3, 4, 5, 5, 6, 1, 1, 2, 3, 3, 4, 2, 2, 3, 4, 4, 5, 2, 2, 3, 4, 4, 5, 3, 3, 4, 5, 5, 6, 2, 2, 3, 4, 4, 5, 3, 3, 4, 5, 5, 6, 3, 3, 4, 5, 5, 6, 4, 4, 5, 6, 6, 7, 1, 1, 2, 3, 3, 4, 2
Offset: 0

Views

Author

Ralf Stephan, Apr 14 2004

Keywords

Programs

  • Mathematica
    Table[IntegerExponent[Round[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2]], 2], {n, 0, 30}] (* Vladimir Reshetnikov, Sep 27 2016 *)
  • PARI
    a(n)=valuation(prod(m=0,n-1,fibonacci(2*n-m))/prod(m=1,n,fibonacci(m)),2)

Extensions

a(0) = 0 added and offset changed from 1 to 0 by Vladimir Reshetnikov, Sep 27 2016

A010048 Triangle of Fibonomial coefficients, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 6, 3, 1, 1, 5, 15, 15, 5, 1, 1, 8, 40, 60, 40, 8, 1, 1, 13, 104, 260, 260, 104, 13, 1, 1, 21, 273, 1092, 1820, 1092, 273, 21, 1, 1, 34, 714, 4641, 12376, 12376, 4641, 714, 34, 1, 1, 55, 1870, 19635, 85085, 136136, 85085, 19635, 1870, 55, 1
Offset: 0

Views

Author

Keywords

Comments

Conjecture: polynomials with (positive) Fibonomial coefficients are reducible iff n odd > 1. - Ralf Stephan, Oct 29 2004

Examples

			First few rows of the triangle T(n, k) are:
  n\k 0   1    2     3     4      5      6      7     8   9  10
   0: 1
   1: 1   1
   2: 1   1    1
   3: 1   2    2     1
   4: 1   3    6     3     1
   5: 1   5   15    15     5      1
   6: 1   8   40    60    40      8      1
   7: 1  13  104   260   260    104     13      1
   8: 1  21  273  1092  1820   1092    273     21     1
   9: 1  34  714  4641 12376  12376   4641    714    34   1
  10: 1  55 1870 19635 85085 136136  85085  19635  1870  55   1
... - Table extended and reformatted by _Wolfdieter Lang_, Oct 10 2012
For n=7 and k=3, n - k + 1 = 7 - 3 + 1 = 5, so T(7,3) = F(7)*F(6)*F(5)/( F(3)*F(2)*F(1)) = 13*8*5/(2*1*1) = 520/2 = 260. - _Michael B. Porter_, Sep 26 2016
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, p. 15.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 84 and 492.

Crossrefs

Cf. A055870 (signed version of triangle).
Sums include: A056569 (row), A181926 (antidiagonal), A181927 (row square-sums).
Cf. A003267 and A003268 (central Fibonomial coefficients), A003150 (Fibonomial Catalan numbers), A144712, A099927, A385732/A385733 (Lucas).

Programs

  • Magma
    Fibonomial:= func< n,k | k eq 0 select 1 else (&*[Fibonacci(n-j+1)/Fibonacci(j): j in [1..k]]) >;
    [Fibonomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 20 2024
    
  • Maple
    A010048 := proc(n,k)
        mul(combinat[fibonacci](i),i=n-k+1..n)/mul(combinat[fibonacci](i),i=1..k) ;
    end proc:
    seq(seq(A010048(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 05 2015
  • Mathematica
    f[n_, k_] := Product[ Fibonacci[n - j + 1]/Fibonacci[j], {j, k}]; Table[ f[n, i], {n, 0, 10}, {i, 0, n}] (* Robert G. Wilson v, Dec 04 2009 *)
    Column[Round@Table[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {n, 0, 10}, {k, 0, n}], Center] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
    T[n_, k_] := With[{c = ArcCsch[2] - I Pi/2}, Product[I^j Sinh[c j], {j, k + 1, n}] / Product[I^j Sinh[c j], {j, 1, n - k}]]; Table[Simplify[T[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten  (* Peter Luschny, Jul 08 2025 *)
  • Maxima
    ffib(n):=prod(fib(k),k,1,n);
    fibonomial(n,k):=ffib(n)/(ffib(k)*ffib(n-k));
    create_list(fibonomial(n,k),n,0,20,k,0,n); /* Emanuele Munarini, Apr 02 2012 */
    
  • PARI
    T(n, k) = prod(j=0, k-1, fibonacci(n-j))/prod(j=1, k, fibonacci(j));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Jul 20 2018
    
  • SageMath
    def fibonomial(n,k): return 1 if k==0 else product(fibonacci(n-j+1)/fibonacci(j) for j in range(1,k+1))
    flatten([[fibonomial(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 20 2024

Formula

T(n, k) = ((n, k)) = (F(n)*F(n-1)*...*F(n-k+1))/(F(k)*F(k-1)*...*F(1)), F(i) = Fibonacci numbers A000045.
T(n, k) = Fibonacci(n-k-1)*T(n-1, k-1) + Fibonacci(k+1)*T(n-1, k).
T(n, k) = phi^(k*(n-k)) * C(n, k)A001622%20is%20the%20golden%20ratio,%20and%20C(n,%20k)_q%20is%20the%20q-binomial%20coefficient.%20-%20_Vladimir%20Reshetnikov">{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - _Vladimir Reshetnikov, Sep 26 2016
G.f. of column k: x^k * exp( Sum_{j>=1} Fibonacci((k+1)*j)/Fibonacci(j) * x^j/j ). - Seiichi Manyama, May 07 2025
T(n, k) = Product_{j=k+1..n} i^j*sinh(c*j) / Product_{j=1..n-k} i^j*sinh(c*j) where c = arccsch(2) - i*Pi/2 and i is the imaginary unit. If you substitute sinh by cosh you get the Lucas triangle A385732/A385733, which is a rational triangle. - Peter Luschny, Jul 08 2025

A062073 Decimal expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 27 2001

Keywords

Comments

The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.
Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]

Examples

			1.226742010720353244417630230455361655871409690440250419643297301214...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)
    RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1,0,-I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)
  • PARI
    \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1,17000,(1-a^n))
    
  • PARI
    { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]
C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]
C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013
C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016

A003150 Fibonomial Catalan numbers.

Original entry on oeis.org

1, 1, 3, 20, 364, 17017, 2097018, 674740506, 568965009030, 1255571292290712, 7254987185250544104, 109744478168199574282739, 4346236474244131564253156182, 450625464087974723307205504432150, 122319234225590858340579679211039433810
Offset: 0

Views

Author

Keywords

Examples

			a(5) = F(10)...F(7)/(F(5)...F(1)) = 55*34*21*13/(5*3*2*1*1) = 17017.
		

References

  • H. W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    QBinomial:= func< n, k, q | (&*[( 1-q^(n-j) )/( 1-q^(j+1) ): j in [0..k-1]]) >;
    A003150:= func< n | n eq 0 select 1 else Round( ((1+Sqrt(5))/2)^(n^2)*QBinomial( 2*n, n, -2/(3+Sqrt(5)) )/Fibonacci(n+1) ) >;
    [A003150(n): n in [0..30]]; // G. C. Greubel, Nov 04 2022
    
  • Maple
    A010048 := proc(n,k) local a,j ; a := 1 ; for j from 0 to k-1 do a := a*combinat[fibonacci](n-j)/combinat[fibonacci](k-j) ; end do: return a; end proc:
    A003150 := proc(n) A010048(2*n,n)/combinat[fibonacci](n+1) ; end proc:
    seq(A003150(n),n=0..20) ; # R. J. Mathar, Dec 06 2010
  • Mathematica
    f[n_]:= f[n]= Fibonacci[n]; a[n_]:=Product[f[k], {k,n+2,2n}]/Product[f[k], {k,n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 14 2011 *)
    Table[Fibonorial[2 n]/(Fibonorial[n] Fibonorial[n+1]), {n, 0, 20}] (* Since v. 10.0, Vladimir Reshetnikov, May 21 2016 *)
    Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2]/Fibonacci[n + 1], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
  • PARI
    ft(n) = prod(k=1, n, fibonacci(k)); \\ A003266
    fn(n,k) = ft(n)/(ft(k)*ft(n-k)); \\ A010048
    a(n) = fn(2*n, n)/fibonacci(n+1); \\ Michel Marcus, Aug 05 2023
  • SageMath
    def A003150(n): return round( golden_ratio^(n^2)*gaussian_binomial(2*n, n, -1/golden_ratio^2)/fibonacci(n+1) )
    [A003150(n) for n in range(30)] # G. C. Greubel, Nov 04 2022
    

Formula

F(2n)*F(2n-1)* ...* F(n+2)/(F(n)*F(n-1)* ... *F(1)) = A010048(2*n,n)/F(n+1), F = Fibonacci numbers.
a(n) ~ sqrt(5) * phi^(n^2-n-1) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = 1.22674201072035324441763... is the Fibonacci factorial constant. - Vaclav Kotesovec, Apr 10 2015
a(n) = A003267(n)/F(n+1) = A010048(2*n, n)/F(n+1) = phi^(n^2) * C(2*n, n)A001622%20is%20the%20golden%20ratio,%20and%20C(n,%20k)_q%20is%20the%20q-binomial%20coefficient.%20-%20_Vladimir%20Reshetnikov">{-1/phi^2} / F(n+1), where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - _Vladimir Reshetnikov, Sep 27 2016

A271421 a(n) = fibonorial(3*n)/(fibonorial(2*n+1)*fibonorial(n+1)), where fibonorial(n) = A003266(n).

Original entry on oeis.org

1, 4, 119, 23496, 32149806, 300214157831, 19246160432331107, 8451529006578585976752, 25443734373070679510011112460, 524973397889459587964008354031908560, 74243674067972394056586805754940632245000310, 71965837912588688126721254257169744333502564695515911
Offset: 1

Views

Author

Vladimir Reshetnikov, May 21 2016

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.

Crossrefs

Programs

  • Mathematica
    Table[Fibonorial[3 n]/(Fibonorial[2 n + 1] Fibonorial[n + 1]), {n, 1, 30}] (* The sequence itself *)
    QPochhammer[-1/GoldenRatio^2] (* The Fibonacci factorial constant C in the asymptotic expansion *)

Formula

a(n) ~ 5*phi^(2*n^2 - 3*n - 2)/C where phi = (1+sqrt(5))/2, and C = (-1/phi^2; -1/phi^2)_inf is the Fibonacci factorial constant whose decimal expansion is given in A062073.

A277202 Ratio of the fibonomial Catalan numbers and Lucas numbers.

Original entry on oeis.org

1, 1, 5, 52, 1547, 116501, 23266914, 12105638490, 16520674898562, 58983635652443448, 551479789789947609461, 13497628802000408584637131, 864924115332005227077169874150, 145099921975789867545171624212383670
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 04 2016

Keywords

References

  • H. W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938.

Crossrefs

Programs

  • Mathematica
    Table[Fibonorial[2 n]/(Fibonorial[n] Fibonorial[n + 1] LucasL[n]), {n, 1, 15}] (* since version 10.0, or *)
    Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2]/(Fibonacci[n + 1] LucasL[n]), {n, 1, 15}] (* Round is equivalent to FullSimplify here, but is much faster *)

Formula

a(n) = A003150(n)/A000032(n).
a(n) ~ sqrt(5) * phi^(n^2-2*n-1) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = (-1/phi^2)_inf = 1.22674201072035324441763... is the Fibonacci factorial constant.

A295562 List of numbers whose middle Fibonomial coefficient (2n,n)_F is prime to 105.

Original entry on oeis.org

1, 1312, 3256, 3257, 3936, 3937, 4000, 4001, 4032, 38880, 38881, 39000, 39001, 19928280, 19928281, 21975136, 21975137, 21975305, 21975312, 22054032
Offset: 1

Views

Author

N. J. A. Sloane, Nov 28 2017

Keywords

Comments

From Charlie Neder, Mar 04 2019: (Start)
For the middle Fibonomial coefficient (2n,n)_F to be coprime to a prime p, we must have that the integral part of n/A001177(p) has its base-p digits all < p/2 and its fractional part is < 1/2.
Next term > 10^8. (End)

Crossrefs

Formula

Numbers k congruent to 0 or 1 modulo 8 such that floor(k/4) is in A005836, k is in A037543, and floor(k/8) is in A037461. - Charlie Neder, Mar 04 2019

Extensions

a(10)-a(20) from Charlie Neder, Mar 04 2019
Showing 1-7 of 7 results.