A003266
Product of first n nonzero Fibonacci numbers F(1), ..., F(n).
Original entry on oeis.org
1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000
Offset: 0
a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..99 (terms n = 1..50 from T. D. Noe)
- Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- Spencer J. Franks, Pamela E. Harris, Kimberly Harry, Jan Kretschmann, and Megan Vance, Counting Parking Sequences and Parking Assortments Through Permutations, arXiv:2301.10830 [math.CO], 2023.
- Shyam Sunder Gupta, Fabulous Fibonacci Numbers, Lucas Numbers, and Golden Ratio, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 8, 223-274.
- Tipaluck Krityakierne and Thotsaporn Aek Thanatipanonda, Ansatz in a Nutshell: A Comprehensive Step-by-Step Guide to Polynomial, C-finite, Holonomic, and C^2-finite Sequences, in Applied Mathematical Analysis and Computations (SGMC 2021) Springer Proc. Math. Stat., Vol. 471. Springer, Cham, 255-297. See p. 287.
- Mathematica Stack Exchange, Product of Fibonacci numbers using For/Do/While loops.
- Yuri V. Matiyasevich and Richard K. Guy, A new formula for Pi, Amer. Math. Monthly 93 (1986), no. 8, 631-635. Math. Rev. 2000i:11199.
- Aidan Sudbury, Arthur Sun, David Treeby, and Edward Wang, Pick-up Sticks and the Fibonacci Factorial, arXiv:2504.19911 [math.PR], 2025.
- Thotsaporn Aek Thanatipanonda and Yi Zhang, Sequences: Polynomial, C-finite, Holonomic, ..., arXiv:2004.01370 [math.CO], 2020. See pp. 5-6.
- Eric Weisstein's World of Mathematics, Fibonorial
- Index to divisibility sequences.
-
a003266 n = a003266_list !! (n-1)
a003266_list = scanl1 (*) $ tail a000045_list
-- Reinhard Zumkeller, Sep 03 2013
-
with(combinat): A003266 := n-> mul(fibonacci(i),i=1..n): seq(A003266(n), n=0..20);
-
Rest[FoldList[Times,1,Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
-
a(n)=prod(i=1,n,fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
-
from itertools import islice
def A003266_gen(): # generator of terms
a,b,c = 1,1,1
while True:
yield c
c *= a
a, b = b, a+b
A003266_list = list(islice(A003266_gen(),20)) # Chai Wah Wu, Jan 11 2023
A062381
Let A_n be the n X n matrix defined by A_n[i,j] = 1/F(i+j-1) for 1<=i,j<=n where F(k) is the k-th Fibonacci number (A000045). Then a_n = 1/det(A_n).
Original entry on oeis.org
1, -2, -360, 16848000, 1897448716800000, -3129723891582775706419200000, -541942196790147039091108680776954796441600000, 66373536294235576434745706427960099542896427384297349714149376000000
Offset: 1
Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 08 2001
a(3) = -360 because the matrix is / 1,1,1/2 / 1,1/2, 1/3 / 1/2, 1/3, 1/5 / with determinant -1/360.
-
Table[(-1)^Floor[n/2]*Product[Fibonacci[k]^(n-Abs[k-n]),{k,1,2*n-1}],{n,1,10}]/Table[Product[Product[Fibonacci[k],{k,1,m-1}],{m,1,n}],{n,1,10}]^2 (* Alexander Adamchuk, May 18 2006 *)
-
vector(8, n, 1/matdet(matrix(n, n, i, j, 1/fibonacci(i+j-1)))) \\ Colin Barker, May 01 2015
A067962
a(n) = F(n+2)*(Product_{i=1..n+1} F(i))^2 where F(i)=A000045(i) is the i-th Fibonacci number.
Original entry on oeis.org
1, 2, 12, 180, 7200, 748800, 204422400, 145957593600, 272940700032000, 1336044726656640000, 17122749216831498240000, 574502481723130428948480000, 50464872497041500009263431680000, 11605406728144633757130311383449600000
Offset: 0
Neighbors for n=4 (dots represent spaces, circles represent grid points):
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
.\..\..\..
..\..\..\.
O..O..O..O
- Reinhard Zumkeller, Table of n, a(n) for n = 0..68
- Sergey Kitaev and Toufik Mansour, The problem of the pawns, arXiv:math/0305253 [math.CO], 2003; Annals of Combinatorics 8 (2004) 81-91.
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 69, 421.
Cf. circle
A000204, line
A000045, arrays: ne-sw nw-se
A067965, e-w ne-sw nw-se
A067963, n-s nw-se
A067964, e-w n-s nw-se
A066864, e-w ne-sw n-s nw-se
A063443, n-s
A067966, e-w n-s
A006506, toruses: bare
A002416, ne-sw nw-se
A067960, ne-sw n-s nw-se
A067959, e-w ne-sw n-s nw-se
A067958, n-s
A067961, e-w n-s
A027683, e-w ne-sw n-s
A066866.
-
a067962 n = a067962_list !! n
a067962_list = 1 : zipWith (*) a067962_list (drop 2 a001654_list)
-- Reinhard Zumkeller, Sep 24 2015
-
a:= proc(n) option remember; `if`(n=0, 1, (F->
F(n+1)*F(n+2)*a(n-1))(combinat[fibonacci]))
end:
seq(a(n), n=0..14); # Alois P. Heinz, May 20 2019
-
Rest[Table[With[{c=Fibonacci[Range[n]]},(Times@@Most[c])^2 Last[c]],{n,15}]] (* Harvey P. Dale, Dec 17 2013 *)
-
a(n)=fibonacci(n+2)*prod(i=0,n,fibonacci(i+1))^2
A194157
Product of first n nonzero even-indexed Fibonacci numbers F(2), F(4), F(6), ..., F(2*n).
Original entry on oeis.org
1, 3, 24, 504, 27720, 3991680, 1504863360, 1485300136320, 3838015552250880, 25964175210977203200, 459851507161617245875200, 21322394684069868456741273600, 2588389457883293541569193426124800, 822618641999347403739646931950148812800
Offset: 1
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.
-
[&*[Fibonacci(2*i): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Sep 15 2016
-
with(combinat): A194157 :=proc(n): mul(fibonacci(2*i), i=1..n) end: seq(A194157(n), n=1..14);
-
FoldList[Times, Fibonacci[2 Range[20]]] (* or *)
Table[Round[GoldenRatio^(n(n-1)) QFactorial[n, 1/GoldenRatio^4]], {n, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
Table[Product[Sum[Binomial[m, k]*Fibonacci[k], {k, 1, m}], {m, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 29 2017 *)
-
{a(n) = if( n<0, 0, prod(k=1, n, fibonacci(2*k)))}; /* Michael Somos, Oct 06 2014 */
A082480
a(n) = Product_{k=1..n} (F(k)+1) where F(k) denotes the k-th Fibonacci number.
Original entry on oeis.org
1, 2, 4, 12, 48, 288, 2592, 36288, 798336, 27941760, 1564738560, 140826470400, 20419838208000, 4778242140672000, 1806175529174016000, 1103573248325323776000, 1090330369345419890688000, 1742347930213980985319424000, 4503969399603140847050711040000
Offset: 0
-
with(combinat): a:= n->mul(fibonacci(j)+1, j=0..n): seq(a(n), n=0..20); # Zerinvary Lajos, Mar 29 2009
-
Table[Product[Fibonacci[k]+1,{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 19 2015 *)
-
a(n)=prod(k=1,n,fibonacci(k)+1)
A152686
Partial products of the partial products of the nonzero Fibonacci numbers.
Original entry on oeis.org
1, 1, 1, 2, 12, 360, 86400, 269568000, 17662095360000, 39345496591564800000, 4820704671590339051520000000, 52567343238846954009129910272000000000, 82543717140049422917575408530662149324800000000000
Offset: 0
-
Table[Product[Product[Fibonacci[k],{k,1,j}],{j,1,n}],{n,1,12}] (* Vaclav Kotesovec, May 01 2015 *)
A003150
Fibonomial Catalan numbers.
Original entry on oeis.org
1, 1, 3, 20, 364, 17017, 2097018, 674740506, 568965009030, 1255571292290712, 7254987185250544104, 109744478168199574282739, 4346236474244131564253156182, 450625464087974723307205504432150, 122319234225590858340579679211039433810
Offset: 0
a(5) = F(10)...F(7)/(F(5)...F(1)) = 55*34*21*13/(5*3*2*1*1) = 17017.
- H. W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=0..40
- Christian Ballot, Lucasnomial Fuss-Catalan Numbers and Related Divisibility Questions, J. Int. Seq., Vol. 21 (2018), Article 18.6.5.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
- Henry W. Gould, A new primality criterion of Mann and Shanks and its relation to a theorem of Hermite with extension to Fibonomials, Fib. Quart., 10 (1972), 355-364, 372.
- Henry W. Gould, Fibonomial Catalan numbers: arithmetic properties and a table of the first fifty numbers, Abstract 71T-A216, Notices Amer. Math. Soc, 1971, page 938. [Annotated scanned copy of abstract]
- Henry W. Gould, Letter to N. J. A. Sloane, Nov 1973, and various attachments.
- Bruce Sagan, Open Problems for Catalan Number Analogues, January 11, 2015. See FiboCatalan numbers p. 6.
- Eric Weisstein's World of Mathematics, q-Binomial Coefficient.
-
QBinomial:= func< n, k, q | (&*[( 1-q^(n-j) )/( 1-q^(j+1) ): j in [0..k-1]]) >;
A003150:= func< n | n eq 0 select 1 else Round( ((1+Sqrt(5))/2)^(n^2)*QBinomial( 2*n, n, -2/(3+Sqrt(5)) )/Fibonacci(n+1) ) >;
[A003150(n): n in [0..30]]; // G. C. Greubel, Nov 04 2022
-
A010048 := proc(n,k) local a,j ; a := 1 ; for j from 0 to k-1 do a := a*combinat[fibonacci](n-j)/combinat[fibonacci](k-j) ; end do: return a; end proc:
A003150 := proc(n) A010048(2*n,n)/combinat[fibonacci](n+1) ; end proc:
seq(A003150(n),n=0..20) ; # R. J. Mathar, Dec 06 2010
-
f[n_]:= f[n]= Fibonacci[n]; a[n_]:=Product[f[k], {k,n+2,2n}]/Product[f[k], {k,n}]; Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Dec 14 2011 *)
Table[Fibonorial[2 n]/(Fibonorial[n] Fibonorial[n+1]), {n, 0, 20}] (* Since v. 10.0, Vladimir Reshetnikov, May 21 2016 *)
Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2]/Fibonacci[n + 1], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
-
ft(n) = prod(k=1, n, fibonacci(k)); \\ A003266
fn(n,k) = ft(n)/(ft(k)*ft(n-k)); \\ A010048
a(n) = fn(2*n, n)/fibonacci(n+1); \\ Michel Marcus, Aug 05 2023
-
def A003150(n): return round( golden_ratio^(n^2)*gaussian_binomial(2*n, n, -1/golden_ratio^2)/fibonacci(n+1) )
[A003150(n) for n in range(30)] # G. C. Greubel, Nov 04 2022
A003267
Central Fibonomial coefficients.
Original entry on oeis.org
1, 1, 6, 60, 1820, 136136, 27261234, 14169550626, 19344810307020, 69056421075989160, 645693859487298425256, 15803204856220738696714416, 1012673098498882654470985390406, 169885799961166470686816475170920550, 74614732877610423587753604318734054624100
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
- Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
- Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
- Eric Weisstein's World of Mathematics, Central Fibonomial Coefficient [From _Eric W. Weisstein_, Dec 08 2009]
- Eric Weisstein's World of Mathematics, q-Binomial Coefficient.
-
with(combinat): a := n -> product(fibonacci(n+k+1), k=0..n-1)/product(fibonacci(k), k=1..n):
seq(a(n), n=0..20);
-
f[n_] := Product[Fibonacci[n + k + 1]/Fibonacci[k + 1], {k, 0, n - 1}]; Array[f, 14, 0] (* Robert G. Wilson v, Dec 04 2009 *)
Flatten[{1, Table[Round[-(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n])], {n,1,15}]}] (* Vaclav Kotesovec, Apr 10 2015 after Eric W. Weisstein *)
Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
-
a(n)=prod(k=0,n-1,fibonacci(n+k+1))/prod(k=1,n,fibonacci(k))
for(n=0,14,print1(a(n),","))
Offset corrected from 1 to 0, formulae and programs are updated accordingly by
Vladimir Reshetnikov, Sep 27 2016
A056569
Row sums of Fibonomial triangle A010048.
Original entry on oeis.org
1, 2, 3, 6, 14, 42, 158, 756, 4594, 35532, 349428, 4370436, 69532964, 1407280392, 36228710348, 1186337370456, 49415178236344, 2618246576596392, 176462813970065208, 15128228719573952976, 1649746715671916095304
Offset: 0
-
Table[Sum[Product[Fibonacci[j],{j,1,n}] / Product[Fibonacci[j],{j,1,k}] / Product[Fibonacci[j],{j,1,n-k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 30 2015 *)
(* Or, since version 10 *) Table[Sum[Fibonorial[n]/Fibonorial[k]/Fibonorial[n-k],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Apr 30 2015 *)
Round@Table[Sum[GoldenRatio^(k(n-k)) QBinomial[n, k, -1/GoldenRatio^2], {k, 0, n}], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
-
ffib(n):=prod(fib(k),k,1,n);
fibonomial(n,k):=ffib(n)/(ffib(k)*ffib(n-k));
makelist(sum(fibonomial(n,k),k,0,n),n,0,30); /* Emanuele Munarini, Apr 02 2012 */
A194158
Product of first n nonzero odd-indexed Fibonacci numbers F(1), ..., F(2*n-1).
Original entry on oeis.org
1, 2, 10, 130, 4420, 393380, 91657540, 55911099400, 89290025741800, 373321597626465800, 4086378207619294646800, 117103340295746126693347600, 8785678105688353155168403690000, 1725665322163094950031867515982420000, 887387152950606153059937200876123854180000
Offset: 1
G.f. = 1 + x + 2*x^2 + 10*x^3 + 130*x^4 + 4420*x^5 + 393380*x^6 + 91657540*x^7 + ...
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.
-
with(combinat): A194158 :=proc(n): mul(fibonacci(2*i-1), i=1..n) end: seq(A194158(n), n=1..15);
-
Table[Product[Fibonacci[2*k - 1], {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Aug 13 2018 *)
-
{a(n) = if( n<0, 1 / a(-n), prod(k=1, n, fibonacci(2*k - 1)))}; /* Michael Somos, Oct 07 2014 */
Showing 1-10 of 33 results.
Comments