Original entry on oeis.org
0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0
a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
-
a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 02 2024
-
s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
Table[u[n], {n, 0, 20}]
-
a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024
A374654
a(n) = Product_{k=0..n} L(k)+1, where L=A000032 (Lucas numbers).
Original entry on oeis.org
3, 6, 24, 120, 960, 11520, 218880, 6566400, 315187200, 24269414400, 3009407385600, 601881477120000, 194407717109760000, 101480828331294720000, 85649819111612743680000, 116912003087351395123200000, 258141702816871880432025600000
Offset: 0
-
w[n_] := Product[LucasL[k] + 1, {k, 0, n}]
Table[w[n], {n, 0, 20}]
A217757
Product_{i=0..n} (i! + 1).
Original entry on oeis.org
2, 4, 12, 84, 2100, 254100, 183206100, 923541950100, 37238134969982100, 13513011656042074430100, 49036030210457135734021310100, 1957361459740805606124917565020990100, 937579272951542930363610919638075856505150100
Offset: 0
-
function factorial(n) {
var i,c=1;
for (i=2;i<=n;i++) c*=i;
return c;
}
a=2;
for (j=1;j<10;j++) {
a*=(factorial(j)+1);
document.write(a+", ");
}
-
a:= proc(n) a(n):= `if`(n=0, 2, a(n-1)*(n!+1)) end:
seq(a(n), n=0..14); # Alois P. Heinz, May 20 2013
-
Table[Product[i!+1,{i,0,n}],{n,0,12}] (* Geoffrey Critzer, May 04 2013 *)
Rest[FoldList[Times,1,Range[0,15]!+1]] (* Harvey P. Dale, May 28 2013 *)
A158472
Triangle read by rows: n-th row is the expansion of the polynomial (x-F1)*(x-F2)*(x-F3)*...*(x-Fn).
Original entry on oeis.org
1, 1, -1, 1, -2, 1, 1, -4, 5, -2, 1, -7, 17, -17, 6, 1, -12, 52, -102, 91, -30, 1, -20, 148, -518, 907, -758, 240, 1, -33, 408, -2442, 7641, -12549, 10094, -3120, 1, -54, 1101, -11010, 58923, -173010, 273623, -215094, 65520
Offset: 0
First few rows of the unsigned triangle:
1;
1, 1;
1, 2, 1;
1, 4, 5, 2;
1, 7, 17, 17, 6;
1, 12, 52, 102, 91, 30;
1, 20, 148, 518, 907, 758, 240;
1, 33, 408, 2442, 7641, 12549, 10094, 3120;
1, 54, 1101, 11010, 58923, 173010, 273623, 215094, 65520;
...
Example: row 5 is x^5 - 12x^4 + 52x^3 - 102x^2 + 91x - 30
= (x-1)*(x-1)*(x-2)*(x-3)*(x-5).
-
p:= proc(n) option remember; expand(`if`(n=0, 1,
p(n-1)*(x-(<<0|1>, <1|1>>^n)[1, 2])))
end:
T:= (n, k)-> coeff(p(n), x, n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Nov 06 2016
-
Array[Reverse@ CoefficientList[Times @@ Array[(x - Fibonacci@ #) &, #], x] &, 9, 0] // Flatten (* Michael De Vlieger, Apr 21 2019 *)
-
row(n) = Vec(prod(k=1, n, x-fibonacci(k)));
for (n=0, 10, print(row(n))); \\ Michel Marcus, Apr 22 2019
A258325
a(n) = Product_{k=1..n} (1 + p(k)), where p(k) is the partition function A000041.
Original entry on oeis.org
1, 2, 6, 24, 144, 1152, 13824, 221184, 5087232, 157704192, 6781280256, 386532974592, 30149572018176, 3075256345853952, 418234863036137472, 74027570757396332544, 17174396415715949150208, 5117970131883352846761984, 1975536470906974198850125824
Offset: 0
-
a:= proc(n) option remember: `if`(n<1, 1,
(1+combinat[numbpart](n))*a(n-1))
end:
seq(a(n), n=0..20);
-
Table[Product[PartitionsP[k]+1,{k,1,n}],{n,0,20}]
A260231
a(n) = Product_{k=1..n} (1 + k^k).
Original entry on oeis.org
2, 10, 280, 71960, 224946960, 10495350312720, 8643382777938679680, 145011908479540041684850560, 56180584638978557924165229531974400, 561805846445966163880630853243909229531974400, 160289764609087349005207761687490741791453382934816332800
Offset: 1
-
Table[Product[1+k^k,{k,1,n}],{n,1,12}]
FoldList[Times,Table[1+k^k,{k,12}]] (* Harvey P. Dale, Jul 19 2025 *)
A374662
a(n) = (1/2)*Product_{k=0..n} (F(k)+2), where F=A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 3, 9, 36, 180, 1260, 12600, 189000, 4347000, 156492000, 8920044000, 811724004000, 118511704584000, 27850250577240000, 10555244968773960000, 6459809920889663520000, 6388752011759877221280000, 10215614466804043676826720000, 26417579011155256948273897920000
Offset: 0
-
q[n_] := Fibonacci[n]
p[n_] := Product[q[k] + 2, {k, 0, n}]
Table[Simplify[p[n]/2], {n, 0, 20}]
-
a(n) = prod(k=0, n, fibonacci(k)+2)/2; \\ Michel Marcus, Aug 04 2024
A374982
a(n) = (1/3)*Product_{k=0..n} (F(k)+3), where F=A000045 (Fibonacci numbers).
Original entry on oeis.org
1, 4, 16, 80, 480, 3840, 42240, 675840, 16220160, 600145920, 34808463360, 3202378629120, 470749658480640, 111096919401431040, 42216829372543795200, 25878916405369346457600, 25620127241315652993024000, 40992203586105044788838400000
Offset: 0
-
q[n_] := Fibonacci[n]
p[n_] := Product[q[k] + 3, {k, 0, n}]
Table[(1/3)*Simplify[p[n]], {n, 0, 20}]
-
a(n) = prod(k=0, n, fibonacci(k)+3)/3; \\ Michel Marcus, Aug 04 2024
Showing 1-8 of 8 results.
Comments