cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003266 Product of first n nonzero Fibonacci numbers F(1), ..., F(n).

Original entry on oeis.org

1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000
Offset: 0

Views

Author

Keywords

Comments

Equals right border of unsigned triangle A158472. - Gary W. Adamson, Mar 20 2009
Three closely related sequences are A194157 (product of first n nonzero F(2*n)), A194158 (product of first n nonzero F(2*n-1)) and A123029 (a(2*n) = A194157(n) and a(2*n-1) = A194158(n)). - Johannes W. Meijer, Aug 21 2011
a(n+1)^2 is the number of ways to tile this pyramid of height n with squares and dominoes, where vertical dominoes can only appear (if at all) in the central column. Here is a pyramid of height n=4,
_
||_
||_||
||_|||_|_
|||_|||_|_|,
and here is one of the a(5)^2 = 900 possible such tilings with our given restrictions:
_
||_||
|__|_|_|_
||__|___|||. - Greg Dresden and Jiayi Liu, Aug 23 2024

Examples

			a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A123741 (for Fibonacci second version), A002110 (for primes), A070825 (for Lucas), A003046 (for Catalan), A126772 (for Padovan), A069777 (q-factorial numbers for sums of powers). - Johannes W. Meijer, Aug 21 2011

Programs

  • Haskell
    a003266 n = a003266_list !! (n-1)
    a003266_list = scanl1 (*) $ tail a000045_list
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(combinat): A003266 := n-> mul(fibonacci(i),i=1..n): seq(A003266(n), n=0..20);
  • Mathematica
    Rest[FoldList[Times,1,Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
    Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n)=prod(i=1,n,fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
    
  • Python
    from itertools import islice
    def A003266_gen(): # generator of terms
        a,b,c = 1,1,1
        while True:
            yield c
            c *= a
            a, b = b, a+b
    A003266_list = list(islice(A003266_gen(),20)) # Chai Wah Wu, Jan 11 2023

Formula

a(n) is asymptotic to C*phi^(n*(n+1)/2)/sqrt(5)^n where phi = (1 + sqrt(5))/2 is the golden ratio and the decimal expansion of C is given in A062073. - Benoit Cloitre, Jan 11 2003
a(n+3) = a(n+1)*a(n+2)/a(n) + a(n+2)^2/a(n+1). - Robert Israel, May 19 2014
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 06 2014
0 = a(n)*(+a(n+1)*a(n+3) - a(n+2)^2) + a(n+2)*(-a(n+1)^2) for all n >= 0. - Michael Somos, Oct 06 2014
Sum_{n>=1} 1/a(n) = A101689. - Amiram Eldar, Oct 27 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A135598. - Amiram Eldar, Apr 12 2021
a(n) = (2/sqrt(5))^n * Product_{j=1..n} i^j*sinh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 12 2016

A194158 Product of first n nonzero odd-indexed Fibonacci numbers F(1), ..., F(2*n-1).

Original entry on oeis.org

1, 2, 10, 130, 4420, 393380, 91657540, 55911099400, 89290025741800, 373321597626465800, 4086378207619294646800, 117103340295746126693347600, 8785678105688353155168403690000, 1725665322163094950031867515982420000, 887387152950606153059937200876123854180000
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
The a(n) is asymptotic to C1*phi^(n*n)/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio A001622. For the decimal expansion of C1 see A194160.

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 130*x^4 + 4420*x^5 + 393380*x^6 + 91657540*x^7 + ...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Maple
    with(combinat): A194158 :=proc(n): mul(fibonacci(2*i-1), i=1..n) end: seq(A194158(n), n=1..15);
  • Mathematica
    Table[Product[Fibonacci[2*k - 1], {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    {a(n) = if( n<0, 1 / a(-n), prod(k=1, n, fibonacci(2*k - 1)))}; /* Michael Somos, Oct 07 2014 */

Formula

a(n) = Product_{i=1..n} F(2*i-1), where F(n) = A000045(n).
a(n) = A123029(2*n-1).
a(n+1)/a(n) = A001519(n+1).
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 07 2014
a(-n) = 1/a(n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1)*a(n+3) - 3*a(n+2)^2) + a(n+2)*(+a(n+1)^2) for all n in Z. - Michael Somos, Oct 07 2014
(F(1) + i)(F(3) + i)...(F(2n+1) + i) = a(n)(1 + F(2n+2)i) and (F(2n+1) + i)(1 + F(2n)i) = F(2n-1)(1 + F(2n+2)i) for all n in Z. - Michael Somos, Sep 16 2023

A194159 Constant associated with the product of the first n nonzero even-indexed Fibonacci numbers.

Original entry on oeis.org

8, 3, 2, 8, 8, 3, 2, 4, 4, 0, 3, 3, 9, 1, 2, 9, 8, 2, 4, 5, 0, 2, 5, 6, 6, 4, 3, 1, 3, 6, 1, 4, 2, 2, 9, 4, 2, 2, 7, 3, 2, 1, 5, 1, 9, 9, 4, 0, 9, 0, 5, 0, 3, 2, 4, 5, 1, 5, 4, 2, 2, 4, 0, 8, 9, 2, 5, 7, 6, 0, 6, 4, 8, 3, 9, 8, 5, 4, 5, 9, 9, 3, 4, 0, 8, 9, 1, 1, 6, 9, 2, 5, 6, 6, 8, 0, 5, 5, 8, 1, 8, 2, 1, 4, 9, 5, 1, 3
Offset: 0

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

a(n) = Product_{i=1..n} F(2*i) is asymptotic to C2*phi^(n*(n+1))/sqrt(5)^n where phi = (1+sqrt(5))/2 and F(n) = A000045(n), see A194157. The decimal expansion of the constant C2 is given above.

Examples

			C2 = 0.83288324403391298245025664...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Mathematica
    digits = 108; NProduct[1 - GoldenRatio^(-4*k), {k, 1, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> 200] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013, from 1st formula *)
    RealDigits[QPochhammer[1/GoldenRatio^4], 10, 100][[1]] (* Vladimir Reshetnikov, Sep 15 2016 *)

Formula

Equals Product_{k>=1} (1-alpha^(2*k)) with alpha = -1/phi^2 and phi = (1+sqrt(5))/2.
Equals Sum_{n>=0} (-1)^binomial(n+1,2)*alpha^A152749(n).

A194160 Constant associated with the product of the first n nonzero odd-indexed Fibonacci numbers.

Original entry on oeis.org

1, 4, 7, 2, 8, 8, 5, 9, 2, 9, 0, 9, 9, 5, 6, 9, 3, 1, 4, 6, 0, 7, 1, 3, 4, 2, 8, 1, 5, 0, 3, 8, 1, 5, 9, 3, 2, 2, 6, 9, 6, 2, 9, 5, 1, 5, 2, 6, 5, 6, 9, 9, 0, 5, 3, 7, 1, 1, 1, 5, 8, 6, 2, 3, 7, 6, 2, 7, 3, 6, 4, 9, 2, 8, 7, 7, 0, 5, 3, 7, 4, 4, 8, 2, 0, 5, 3, 1, 5, 9, 0, 6, 0, 9, 3, 6, 0
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

A194158(n) = prod(i=1..n, F(2*i-1) ) is asymptotic to C1*phi^(n*n)/sqrt(5)^n where phi=(1+sqrt(5))/2 and F(n) = A000045(n). The decimal expansion of the constant C1 is given here.

Examples

			C1 = 1.4728859290995693146071...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Mathematica
    RealDigits[Product[1-((-1)/GoldenRatio^2)^(2k-1),{k,1000}],10, 100] [[1]] (* Harvey P. Dale, Aug 28 2011 *)
    RealDigits[QPochhammer[-GoldenRatio^2, 1/GoldenRatio^4]/(GoldenRatio Sqrt[5]), 10, 100][[1]] (* Vladimir Reshetnikov, Sep 15 2016 *)

Formula

C1 = prod(k>=1, 1-alpha^(2*k-1) ) where alpha = (-1/phi^2) and phi = (1+sqrt(5))/2.

A123029 a(2*n-1) = Product_{i=1..n} Fibonacci(2*i-1) and a(2*n) = Product_{i=1..n} Fibonacci(2*i).

Original entry on oeis.org

1, 1, 2, 3, 10, 24, 130, 504, 4420, 27720, 393380, 3991680, 91657540, 1504863360, 55911099400, 1485300136320, 89290025741800, 3838015552250880, 373321597626465800, 25964175210977203200, 4086378207619294646800
Offset: 1

Views

Author

Roger L. Bagula, Sep 25 2006

Keywords

Comments

From Johannes W. Meijer, Aug 21 2011: (Start)
An appropriate name for this sequence is Fibonacci double factorial, cf. A006882.
In Parks' article appendix 2, a number triangle T(n,k) with T(n,n) = a(n+1), n>=0, appears if we assume that b(r) = Fibonacci(r); see A103631 and A194005. (End)
The original name of this sequence was: A000045 inside a second linear differential equation recursion: b(n) = b(n-1) + b(n-2) --> Binet(n) of A000045 a(n) = b(n)*a(n-2)/(n*(n-1)).
Bagula also stated that using the solutions to these second order differential equations Markov/ linear recursions can be encoded as analog functions.
Partial products of the odd-indexed Fibonacci numbers interleaved with the partial products of the even-indexed Fibonacci numbers. - Harvey P. Dale, Mar 14 2012

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 10*x^5 + 24*x^6 + 130*x^7 + 504*x^8 + ...
		

Crossrefs

Programs

  • Magma
    function a(n)
      if n lt 2 then return 1;
      else return Fibonacci(n)*a(n-2);
      end if; return a;
    end function;
    [a(n): n in [1..30]]; // G. C. Greubel, Jul 20 2021
    
  • Maple
    with(combinat): A123029 :=proc(n): if type(n,even) then mul(fibonacci(2*i), i=1..n/2) else mul(fibonacci(2*i-1), i= 1..(n+1)/2) fi: end: seq(A123029(n), n=1..21); # Johannes W. Meijer, Aug 21 2011
  • Mathematica
    a[n_]:= a[n]= If[n<2, 1, Fibonacci[n]*a[n-2]]; Table[a[n], {n, 30}] (* modified by G. C. Greubel, Jul 20 2021 *)
    With[{nn=21},Riffle[FoldList[Times,1,Fibonacci[Range[3,nn,2]]],FoldList[ Times,1, Fibonacci[ Range[4,nn+1,2]]]]] (* Harvey P. Dale, Mar 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=0, (n-1)\2, fibonacci(n - 2*k)))}; /* Michael Somos, Oct 07 2014 */
    
  • Sage
    def a(n): return 1 if (n<2) else fibonacci(n)*a(n-2)
    [a(n) for n in (1..30)] # G. C. Greubel, Jul 20 2021

Formula

a(n) = n!*c(n) with c(n) = b(n)*c(n-2)/(n*(n-1)), c(0) = 1, c(1) = 1; b(n) = b(n-1) + b(n-2), b(0) = 0, b(1) = 1 and b(n) = F(n) with F(n) = A000045(n).
From Johannes W. Meijer, Aug 21 2011: (Start)
a(n) = F(n)*a(n-2).
a(2*n) = A194157(n) and a(2*n-1) = A194158(n). (End)
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 07 2014
0 = a(n)*(a(n+2)*a(n+3) - a(n+1)*a(n+4)) + a(n+1)*(+a(n+2)^2) for all n>=0. - Michael Somos, Oct 07 2014

Extensions

Edited by Johannes W. Meijer, Aug 21 2011

A302999 a(n) = Product_{k=1..n} (Fibonacci(k+2) - 1).

Original entry on oeis.org

1, 1, 2, 8, 56, 672, 13440, 443520, 23950080, 2107607040, 301387806720, 69921971159040, 26290661155799040, 16011012643881615360, 15786858466867272744960, 25195826113120167300956160, 65080818850189392138369761280, 272037822793791659138385602150400
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

a(n) = determinant of (n + 1) X (n + 1) matrix whose main diagonal consists of the consecutive Fibonacci numbers starting with Fibonacci(2) (1, 2, 3, 5, 8, 13, ...) and all other elements are 1's (see example).

Examples

			The matrix begins:
  1  1  1  1  1  1  1  1  ...
  1  2  1  1  1  1  1  1  ...
  1  1  3  1  1  1  1  1  ...
  1  1  1  5  1  1  1  1  ...
  1  1  1  1  8  1  1  1  ...
  1  1  1  1  1 13  1  1  ...
  1  1  1  1  1  1 21  1  ...
  1  1  1  1  1  1  1 34  ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n<1, [1$2][], (f->
          [f, b(n-1)[2]*(f-1)][])(b(n-1)+b(n-2)))
        end:
    a:= n-> b(n)[2]:
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 24 2018
  • Mathematica
    Table[Product[Fibonacci[k + 2] - 1, {k, 1, n}], {n, 0, 17}]
    Table[Product[Sum[Fibonacci[j], {j, 1, k}], {k, 1, n}], {n, 0, 17}]
    Table[Det[Table[If[i == j, Fibonacci[i + 1], 1], {i, 1, n + 1}, {j, 1, n + 1}]], {n, 0, 17}]

Formula

a(n) = Product_{k=1..n} A000071(k+2).
a(n) = Product_{k=1..n} Sum_{j=1..k} A000045(j).
a(n) ~ c * ((1 + sqrt(5))/2)^(n*(n+5)/2) / 5^(n/2), where c = 0.1972502311584232476952451740107000852343536766534965116633336539193... - Vaclav Kotesovec, Apr 17 2018
a(n) = A190535(n-3) for n > 3. - Alois P. Heinz, Apr 25 2018

A349272 a(n) = Product_{k = 1..2*n+1} Fibonacci(2*k) / Sum_{k = 1..2*n+1} Fibonacci(2*k).

Original entry on oeis.org

1, 2, 315, 2471040, 918185538816, 16047302734562299200, 13178031727820369629763174400, 508406658175888466343652105865846784000, 921456090985190879093613420564815806955580862464000, 78458394721620642094151397745899367347021362840662985785265356800
Offset: 0

Views

Author

Peter Bala, Nov 12 2021

Keywords

Comments

Let m be an even positive integer. We conjecture that the sequence defined by b_m(n) = Product_{k = 1..2*n+1} Fibonacci(m*k) / Sum_{k = 1..2*n+1} Fibonacci(m*k) is integral. The formula given below proves the conjecture in the present case m = 2. The cases m = 4 and m = 6 of the conjecture can be proved in a similar manner.
More generally, if F(n,x) denotes the n-th Fibonacci polynomial we conjecture that, for each n, the rational function Product_{k = 1..2*n+1} F(m*k,x) / Sum_{k = 1..2*n+1} F(m*k,x) is an integral polynomial.

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(mul(fibonacci(2*k), k = 1..2*n+1)/add(fibonacci(2*k), k = 1..2*n+1), n = 0..10);
  • Mathematica
    Table[Product[ Fibonacci[2k],{k,2n+1}]/Sum[Fibonacci[2k],{k,2n+1}],{n,0,9}] (* Stefano Spezia, Nov 13 2021 *)
  • PARI
    a(n) = prod(k = 1, 2*n+1, fibonacci(2*k)) / sum(k = 1, 2*n+1, fibonacci(2*k)); \\ Michel Marcus, Nov 12 2021

Formula

a(n) = F(2*n+1)/F(2*n+2) * Product_{k = 1..2*n} Fibonacci(2*k), shows a(n) to be integral. Cf. A159951.
a(n) ~ A194159 * phi^(4*n^2 + 2*n - 1) / 5^n, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 31 2023

A294349 Product of first n terms of the binomial transform of the Lucas numbers (A000032).

Original entry on oeis.org

2, 6, 42, 756, 35532, 4370436, 1407280392, 1186337370456, 2618246576596392, 15128228719573952976, 228844715840995186667952, 9062937281450932377610903056, 939663463215395570775453650652192, 255065069445576619918001465293982953056
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 29 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Sum[Binomial[m, k]*LucasL[k], {k, 0, m}], {m, 0, n}], {n, 0, 15}]
    Table[Product[LucasL[2*k], {k, 0, n}], {n, 0, 15}]

Formula

a(n) ~ c * phi^(n*(n+1)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and c = 2.349094356918735309421297337651771419003525539652230102934874983942...
Showing 1-8 of 8 results.