cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A062073 Decimal expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 27 2001

Keywords

Comments

The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.
Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]

Examples

			1.226742010720353244417630230455361655871409690440250419643297301214...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)
    RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1,0,-I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)
  • PARI
    \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1,17000,(1-a^n))
    
  • PARI
    { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]
C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]
C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013
C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016

A152749 a(n) = (n+1)*(3*n+1)/4 for n odd, a(n) = n*(3*n+2)/4 for n even.

Original entry on oeis.org

0, 2, 4, 10, 14, 24, 30, 44, 52, 70, 80, 102, 114, 140, 154, 184, 200, 234, 252, 290, 310, 352, 374, 420, 444, 494, 520, 574, 602, 660, 690, 752, 784, 850, 884, 954, 990, 1064, 1102, 1180, 1220, 1302, 1344, 1430, 1474, 1564, 1610, 1704, 1752, 1850, 1900, 2002
Offset: 0

Views

Author

Vincenzo Librandi, Dec 31 2009

Keywords

Comments

Interleaving of A049450 and A049451 (for n > 0).
Also, integer values of k*(k+1)/3. - Charles R Greathouse IV, Dec 11 2010
The nonzero coefficients of the expansion of f(a) = Product_{k>=1} (1-a^(2k)), see A194159, occur at the terms of the sequence given above, i.e., f(a) = 1 - a^2 - a^4 + a^10 + a^14 - a^24 - a^30 + a^44 + a^52 - a^70 - a^80 + ... = Sum_{n>=0} (-1)^binomial(n+1,2)*a^A152749(n). - Johannes W. Meijer, Aug 21 2011
Partial sums of A109043. - Reinhard Zumkeller, Mar 31 2012
Nonnegative k such that 12*k+1 is a square. - Vicente Izquierdo Gomez, Jul 22 2013
Equivalently, numbers of the form h*(3*h+1), where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ... (see also the fifth comment of A062717). - Bruno Berselli, Feb 02 2017
For n > 0, a(n-1) is the sum of the largest parts of the partitions of 2n into two even parts. - Wesley Ivan Hurt, Dec 19 2017
The sequence terms occur as exponents in the expansion of Sum_{n >= 0} q^(n*(n+1)/2) * Product_{k >= n+1} 1 - q^k = 1 - q^2 - q^4 + q^10 + q^14 - q^24 - q^30 + + - - .... - Peter Bala, Dec 15 2024
Sequence terms occur as exponents in the expansions of Sum_{n >= 0} q^(n*(2*n+1)) * Product_{k >= 2*n+2} 1 - q^k = Sum_{n >= 0} q^(n*(2*n-1)) * Product_{k >= 2*n+1} 1 - q^k = 1 - q^2 - q^4 + q^10 + q^14 - q^24 - q^30 + + - - .... - Peter Bala, Jun 23 2025

Crossrefs

Cf. A049450 (n*(3*n-1)), A049451 (n*(3*n+1)), A153383 (12n+1 is not prime).

Programs

  • Haskell
    a152749 n = a152749_list !! (n-1)
    a152749_list = scanl1 (+) a109043_list
    -- Reinhard Zumkeller, Mar 31 2012
  • Magma
    [IsOdd(n) select (n+1)*(3*n+1)/4 else n*(3*n+2)/4: n in [0..52]];
    
  • Magma
    f:=func; [0] cat [f(n*m): m in [-1,1], n in [1..30]]; // Bruno Berselli, Nov 13 2012
    
  • Maple
    A152749 := proc(n): if type(n,even) then n*(3*n+2)/4  else (n+1)*(3*n+1)/4 fi: end: seq(A152749(n), n=0..51); # Johannes W. Meijer, Aug 21 2011
  • Mathematica
    Table[If[OddQ[n],(n+1)*(3*n+1)/4,n*(3*n+2)/4],{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Feb 03 2012 *)
    LinearRecurrence[{1,2,-2,-1,1}, {0, 2, 4, 10, 14}, 50] (* Vincenzo Librandi, Feb 22 2012 *)
    Select[Range[1,1000], IntegerQ[Sqrt[12#+1]]&] (* Vicente Izquierdo Gomez, Jul 22 2013 *)

Formula

From R. J. Mathar, Jan 03-06 2009: (Start)
G.f.: 2*x*(1+x+x^2)/((1+x)^2*(1-x)^3).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) = A003154(n+1)/8 - (-1)^n*A005408(n)/8.
a(n) = 2*A001318(n) = ((6*n^2+6*n+1) - (2*n+1)*(-1)^n)/8. (End)
From Amiram Eldar, Mar 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 3 - Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*(log(3)-1). (End)

Extensions

Edited, typo corrected and extended by Klaus Brockhaus, Jan 02 2009
Leading term a(0)=0 added by Johannes W. Meijer, Aug 21 2011

A194157 Product of first n nonzero even-indexed Fibonacci numbers F(2), F(4), F(6), ..., F(2*n).

Original entry on oeis.org

1, 3, 24, 504, 27720, 3991680, 1504863360, 1485300136320, 3838015552250880, 25964175210977203200, 459851507161617245875200, 21322394684069868456741273600, 2588389457883293541569193426124800, 822618641999347403739646931950148812800
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
a(n) is asymptotic to C2*phi^(n*(n+1))/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio. For the decimal expansion of C2 see A194159.
Product of first n terms of the binomial transform of the Fibonacci numbers. - Vaclav Kotesovec, Oct 29 2017

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Magma
    [&*[Fibonacci(2*i): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Sep 15 2016
  • Maple
    with(combinat): A194157 :=proc(n): mul(fibonacci(2*i), i=1..n) end: seq(A194157(n), n=1..14);
  • Mathematica
    FoldList[Times, Fibonacci[2 Range[20]]] (* or *)
    Table[Round[GoldenRatio^(n(n-1)) QFactorial[n, 1/GoldenRatio^4]], {n, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[Product[Sum[Binomial[m, k]*Fibonacci[k], {k, 1, m}], {m, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 29 2017 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, fibonacci(2*k)))}; /* Michael Somos, Oct 06 2014 */
    

Formula

a(n) = Product_{i=1..n} F(2*i) with F(n) = A000045(n).
a(n) = A123029(2*n).
a(n+1)/a(n) = A001906(n+1).
0 = a(n)*(3*a(n+2)^2 - a(n+1)*a(n+3)) -a(n+1)^2*a(n+2) for all n>=0. - Michael Somos, Oct 06 2014

A194158 Product of first n nonzero odd-indexed Fibonacci numbers F(1), ..., F(2*n-1).

Original entry on oeis.org

1, 2, 10, 130, 4420, 393380, 91657540, 55911099400, 89290025741800, 373321597626465800, 4086378207619294646800, 117103340295746126693347600, 8785678105688353155168403690000, 1725665322163094950031867515982420000, 887387152950606153059937200876123854180000
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
The a(n) is asymptotic to C1*phi^(n*n)/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio A001622. For the decimal expansion of C1 see A194160.

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 130*x^4 + 4420*x^5 + 393380*x^6 + 91657540*x^7 + ...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Maple
    with(combinat): A194158 :=proc(n): mul(fibonacci(2*i-1), i=1..n) end: seq(A194158(n), n=1..15);
  • Mathematica
    Table[Product[Fibonacci[2*k - 1], {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    {a(n) = if( n<0, 1 / a(-n), prod(k=1, n, fibonacci(2*k - 1)))}; /* Michael Somos, Oct 07 2014 */

Formula

a(n) = Product_{i=1..n} F(2*i-1), where F(n) = A000045(n).
a(n) = A123029(2*n-1).
a(n+1)/a(n) = A001519(n+1).
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 07 2014
a(-n) = 1/a(n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1)*a(n+3) - 3*a(n+2)^2) + a(n+2)*(+a(n+1)^2) for all n in Z. - Michael Somos, Oct 07 2014
(F(1) + i)(F(3) + i)...(F(2n+1) + i) = a(n)(1 + F(2n+2)i) and (F(2n+1) + i)(1 + F(2n)i) = F(2n-1)(1 + F(2n+2)i) for all n in Z. - Michael Somos, Sep 16 2023

A194160 Constant associated with the product of the first n nonzero odd-indexed Fibonacci numbers.

Original entry on oeis.org

1, 4, 7, 2, 8, 8, 5, 9, 2, 9, 0, 9, 9, 5, 6, 9, 3, 1, 4, 6, 0, 7, 1, 3, 4, 2, 8, 1, 5, 0, 3, 8, 1, 5, 9, 3, 2, 2, 6, 9, 6, 2, 9, 5, 1, 5, 2, 6, 5, 6, 9, 9, 0, 5, 3, 7, 1, 1, 1, 5, 8, 6, 2, 3, 7, 6, 2, 7, 3, 6, 4, 9, 2, 8, 7, 7, 0, 5, 3, 7, 4, 4, 8, 2, 0, 5, 3, 1, 5, 9, 0, 6, 0, 9, 3, 6, 0
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

A194158(n) = prod(i=1..n, F(2*i-1) ) is asymptotic to C1*phi^(n*n)/sqrt(5)^n where phi=(1+sqrt(5))/2 and F(n) = A000045(n). The decimal expansion of the constant C1 is given here.

Examples

			C1 = 1.4728859290995693146071...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Mathematica
    RealDigits[Product[1-((-1)/GoldenRatio^2)^(2k-1),{k,1000}],10, 100] [[1]] (* Harvey P. Dale, Aug 28 2011 *)
    RealDigits[QPochhammer[-GoldenRatio^2, 1/GoldenRatio^4]/(GoldenRatio Sqrt[5]), 10, 100][[1]] (* Vladimir Reshetnikov, Sep 15 2016 *)

Formula

C1 = prod(k>=1, 1-alpha^(2*k-1) ) where alpha = (-1/phi^2) and phi = (1+sqrt(5))/2.

A349272 a(n) = Product_{k = 1..2*n+1} Fibonacci(2*k) / Sum_{k = 1..2*n+1} Fibonacci(2*k).

Original entry on oeis.org

1, 2, 315, 2471040, 918185538816, 16047302734562299200, 13178031727820369629763174400, 508406658175888466343652105865846784000, 921456090985190879093613420564815806955580862464000, 78458394721620642094151397745899367347021362840662985785265356800
Offset: 0

Views

Author

Peter Bala, Nov 12 2021

Keywords

Comments

Let m be an even positive integer. We conjecture that the sequence defined by b_m(n) = Product_{k = 1..2*n+1} Fibonacci(m*k) / Sum_{k = 1..2*n+1} Fibonacci(m*k) is integral. The formula given below proves the conjecture in the present case m = 2. The cases m = 4 and m = 6 of the conjecture can be proved in a similar manner.
More generally, if F(n,x) denotes the n-th Fibonacci polynomial we conjecture that, for each n, the rational function Product_{k = 1..2*n+1} F(m*k,x) / Sum_{k = 1..2*n+1} F(m*k,x) is an integral polynomial.

Crossrefs

Programs

  • Maple
    with(combinat):
    seq(mul(fibonacci(2*k), k = 1..2*n+1)/add(fibonacci(2*k), k = 1..2*n+1), n = 0..10);
  • Mathematica
    Table[Product[ Fibonacci[2k],{k,2n+1}]/Sum[Fibonacci[2k],{k,2n+1}],{n,0,9}] (* Stefano Spezia, Nov 13 2021 *)
  • PARI
    a(n) = prod(k = 1, 2*n+1, fibonacci(2*k)) / sum(k = 1, 2*n+1, fibonacci(2*k)); \\ Michel Marcus, Nov 12 2021

Formula

a(n) = F(2*n+1)/F(2*n+2) * Product_{k = 1..2*n} Fibonacci(2*k), shows a(n) to be integral. Cf. A159951.
a(n) ~ A194159 * phi^(4*n^2 + 2*n - 1) / 5^n, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 31 2023
Showing 1-6 of 6 results.