cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A062073 Decimal expansion of Fibonacci factorial constant.

Original entry on oeis.org

1, 2, 2, 6, 7, 4, 2, 0, 1, 0, 7, 2, 0, 3, 5, 3, 2, 4, 4, 4, 1, 7, 6, 3, 0, 2, 3, 0, 4, 5, 5, 3, 6, 1, 6, 5, 5, 8, 7, 1, 4, 0, 9, 6, 9, 0, 4, 4, 0, 2, 5, 0, 4, 1, 9, 6, 4, 3, 2, 9, 7, 3, 0, 1, 2, 1, 4, 0, 2, 2, 1, 3, 8, 3, 1, 5, 3, 1, 2, 1, 6, 8, 4, 5, 2, 6, 2, 1, 5, 6, 2, 4, 9, 4, 7, 9, 7, 7, 4, 1, 2, 5, 9, 1, 3
Offset: 1

Views

Author

Jason Earls, Jun 27 2001

Keywords

Comments

The Fibonacci factorial constant is associated with the Fibonacci factorial A003266.
Two closely related constants are A194159 and A194160. [Johannes W. Meijer, Aug 21 2011]

Examples

			1.226742010720353244417630230455361655871409690440250419643297301214...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.5.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison Wesley, 1990, pp. 478, 571.

Crossrefs

Programs

  • Mathematica
    RealDigits[N[QPochhammer[-1/GoldenRatio^2], 105]][[1]] (* Alonso del Arte, Dec 20 2010 *)
    RealDigits[N[Re[(-1)^(1/24) * GoldenRatio^(1/12) / 2^(1/3) * EllipticThetaPrime[1,0,-I/GoldenRatio]^(1/3)], 120]][[1]] (* Vaclav Kotesovec, Jul 19 2015, after Eric W. Weisstein *)
  • PARI
    \p 1300 a=-1/(1/2+sqrt(5)/2)^2; prod(n=1,17000,(1-a^n))
    
  • PARI
    { default(realprecision, 5080); p=-1/(1/2 + sqrt(5)/2)^2; x=prodinf(k=1, 1-p^k); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b062073.txt", n, " ", d)) } \\ Harry J. Smith, Jul 31 2009

Formula

C = (1-a)*(1-a^2)*(1-a^3)... 1.2267420... where a = -1/phi^2 and where phi is the Golden ratio = 1/2 + sqrt(5)/2.
C = QPochhammer[ -1/GoldenRatio^2]. [Eric W. Weisstein, Dec 01 2009]
C = A194159 * A194160. [Johannes W. Meijer, Aug 21 2011]
C = exp( Sum_{k>=1} 1/(k*(1-(-(3+sqrt(5))/2)^k)) ). - Vaclav Kotesovec, Jun 08 2013
C = Sum_{k = -inf .. inf} (-1)^((k-1)*k/2) / phi^((3*k-1)*k), where phi = (1 + sqrt(5))/2. - Vladimir Reshetnikov, Sep 20 2016

A194157 Product of first n nonzero even-indexed Fibonacci numbers F(2), F(4), F(6), ..., F(2*n).

Original entry on oeis.org

1, 3, 24, 504, 27720, 3991680, 1504863360, 1485300136320, 3838015552250880, 25964175210977203200, 459851507161617245875200, 21322394684069868456741273600, 2588389457883293541569193426124800, 822618641999347403739646931950148812800
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
a(n) is asymptotic to C2*phi^(n*(n+1))/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio. For the decimal expansion of C2 see A194159.
Product of first n terms of the binomial transform of the Fibonacci numbers. - Vaclav Kotesovec, Oct 29 2017

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Magma
    [&*[Fibonacci(2*i): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Sep 15 2016
  • Maple
    with(combinat): A194157 :=proc(n): mul(fibonacci(2*i), i=1..n) end: seq(A194157(n), n=1..14);
  • Mathematica
    FoldList[Times, Fibonacci[2 Range[20]]] (* or *)
    Table[Round[GoldenRatio^(n(n-1)) QFactorial[n, 1/GoldenRatio^4]], {n, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[Product[Sum[Binomial[m, k]*Fibonacci[k], {k, 1, m}], {m, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 29 2017 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, fibonacci(2*k)))}; /* Michael Somos, Oct 06 2014 */
    

Formula

a(n) = Product_{i=1..n} F(2*i) with F(n) = A000045(n).
a(n) = A123029(2*n).
a(n+1)/a(n) = A001906(n+1).
0 = a(n)*(3*a(n+2)^2 - a(n+1)*a(n+3)) -a(n+1)^2*a(n+2) for all n>=0. - Michael Somos, Oct 06 2014

A194158 Product of first n nonzero odd-indexed Fibonacci numbers F(1), ..., F(2*n-1).

Original entry on oeis.org

1, 2, 10, 130, 4420, 393380, 91657540, 55911099400, 89290025741800, 373321597626465800, 4086378207619294646800, 117103340295746126693347600, 8785678105688353155168403690000, 1725665322163094950031867515982420000, 887387152950606153059937200876123854180000
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
The a(n) is asymptotic to C1*phi^(n*n)/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio A001622. For the decimal expansion of C1 see A194160.

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 130*x^4 + 4420*x^5 + 393380*x^6 + 91657540*x^7 + ...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Maple
    with(combinat): A194158 :=proc(n): mul(fibonacci(2*i-1), i=1..n) end: seq(A194158(n), n=1..15);
  • Mathematica
    Table[Product[Fibonacci[2*k - 1], {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    {a(n) = if( n<0, 1 / a(-n), prod(k=1, n, fibonacci(2*k - 1)))}; /* Michael Somos, Oct 07 2014 */

Formula

a(n) = Product_{i=1..n} F(2*i-1), where F(n) = A000045(n).
a(n) = A123029(2*n-1).
a(n+1)/a(n) = A001519(n+1).
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 07 2014
a(-n) = 1/a(n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1)*a(n+3) - 3*a(n+2)^2) + a(n+2)*(+a(n+1)^2) for all n in Z. - Michael Somos, Oct 07 2014
(F(1) + i)(F(3) + i)...(F(2n+1) + i) = a(n)(1 + F(2n+2)i) and (F(2n+1) + i)(1 + F(2n)i) = F(2n-1)(1 + F(2n+2)i) for all n in Z. - Michael Somos, Sep 16 2023

A194159 Constant associated with the product of the first n nonzero even-indexed Fibonacci numbers.

Original entry on oeis.org

8, 3, 2, 8, 8, 3, 2, 4, 4, 0, 3, 3, 9, 1, 2, 9, 8, 2, 4, 5, 0, 2, 5, 6, 6, 4, 3, 1, 3, 6, 1, 4, 2, 2, 9, 4, 2, 2, 7, 3, 2, 1, 5, 1, 9, 9, 4, 0, 9, 0, 5, 0, 3, 2, 4, 5, 1, 5, 4, 2, 2, 4, 0, 8, 9, 2, 5, 7, 6, 0, 6, 4, 8, 3, 9, 8, 5, 4, 5, 9, 9, 3, 4, 0, 8, 9, 1, 1, 6, 9, 2, 5, 6, 6, 8, 0, 5, 5, 8, 1, 8, 2, 1, 4, 9, 5, 1, 3
Offset: 0

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

a(n) = Product_{i=1..n} F(2*i) is asymptotic to C2*phi^(n*(n+1))/sqrt(5)^n where phi = (1+sqrt(5))/2 and F(n) = A000045(n), see A194157. The decimal expansion of the constant C2 is given above.

Examples

			C2 = 0.83288324403391298245025664...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Mathematica
    digits = 108; NProduct[1 - GoldenRatio^(-4*k), {k, 1, Infinity}, WorkingPrecision -> digits+10, NProductFactors -> 200] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 14 2013, from 1st formula *)
    RealDigits[QPochhammer[1/GoldenRatio^4], 10, 100][[1]] (* Vladimir Reshetnikov, Sep 15 2016 *)

Formula

Equals Product_{k>=1} (1-alpha^(2*k)) with alpha = -1/phi^2 and phi = (1+sqrt(5))/2.
Equals Sum_{n>=0} (-1)^binomial(n+1,2)*alpha^A152749(n).
Showing 1-4 of 4 results.