cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003266 Product of first n nonzero Fibonacci numbers F(1), ..., F(n).

Original entry on oeis.org

1, 1, 1, 2, 6, 30, 240, 3120, 65520, 2227680, 122522400, 10904493600, 1570247078400, 365867569267200, 137932073613734400, 84138564904377984000, 83044763560621070208000, 132622487406311849122176000, 342696507457909818131702784000
Offset: 0

Views

Author

Keywords

Comments

Equals right border of unsigned triangle A158472. - Gary W. Adamson, Mar 20 2009
Three closely related sequences are A194157 (product of first n nonzero F(2*n)), A194158 (product of first n nonzero F(2*n-1)) and A123029 (a(2*n) = A194157(n) and a(2*n-1) = A194158(n)). - Johannes W. Meijer, Aug 21 2011
a(n+1)^2 is the number of ways to tile this pyramid of height n with squares and dominoes, where vertical dominoes can only appear (if at all) in the central column. Here is a pyramid of height n=4,
_
||_
||_||
||_|||_|_
|||_|||_|_|,
and here is one of the a(5)^2 = 900 possible such tilings with our given restrictions:
_
||_||
|__|_|_|_
||__|___|||. - Greg Dresden and Jiayi Liu, Aug 23 2024

Examples

			a(5) = 30 because the first 5 Fibonacci numbers are 1, 1, 2, 3, 5 and 1 * 1 * 2 * 3 * 5 = 30.
a(6) = 240 because 8 is the sixth Fibonacci number and a(5) * 8 = 240.
a(7) = 3120 because 13 is the seventh Fibonacci number and a(6) * 13 = 3120.
G.f. = 1 + x + x^2 + 2*x^3 + 6*x^4 + 30*x^5 + 240*x^6 + 3120*x^7 + ...
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, second edition, Addison Wesley, p 597
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A123741 (for Fibonacci second version), A002110 (for primes), A070825 (for Lucas), A003046 (for Catalan), A126772 (for Padovan), A069777 (q-factorial numbers for sums of powers). - Johannes W. Meijer, Aug 21 2011

Programs

  • Haskell
    a003266 n = a003266_list !! (n-1)
    a003266_list = scanl1 (*) $ tail a000045_list
    -- Reinhard Zumkeller, Sep 03 2013
    
  • Maple
    with(combinat): A003266 := n-> mul(fibonacci(i),i=1..n): seq(A003266(n), n=0..20);
  • Mathematica
    Rest[FoldList[Times,1,Fibonacci[Range[20]]]] (* Harvey P. Dale, Jul 11 2011 *)
    a[ n_] := If[ n < 0, 0, Fibonorial[n]]; (* Michael Somos, Oct 23 2017 *)
    Table[Round[GoldenRatio^(n(n-1)/2) QFactorial[n, GoldenRatio-2]], {n, 20}] (* Vladimir Reshetnikov, Sep 14 2016 *)
  • PARI
    a(n)=prod(i=1,n,fibonacci(i)) \\ Charles R Greathouse IV, Jan 13 2012
    
  • Python
    from itertools import islice
    def A003266_gen(): # generator of terms
        a,b,c = 1,1,1
        while True:
            yield c
            c *= a
            a, b = b, a+b
    A003266_list = list(islice(A003266_gen(),20)) # Chai Wah Wu, Jan 11 2023

Formula

a(n) is asymptotic to C*phi^(n*(n+1)/2)/sqrt(5)^n where phi = (1 + sqrt(5))/2 is the golden ratio and the decimal expansion of C is given in A062073. - Benoit Cloitre, Jan 11 2003
a(n+3) = a(n+1)*a(n+2)/a(n) + a(n+2)^2/a(n+1). - Robert Israel, May 19 2014
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 06 2014
0 = a(n)*(+a(n+1)*a(n+3) - a(n+2)^2) + a(n+2)*(-a(n+1)^2) for all n >= 0. - Michael Somos, Oct 06 2014
Sum_{n>=1} 1/a(n) = A101689. - Amiram Eldar, Oct 27 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A135598. - Amiram Eldar, Apr 12 2021
a(n) = (2/sqrt(5))^n * Product_{j=1..n} i^j*sinh(c*j), where c = arccsch(2) - i*Pi/2. - Peter Luschny, Jul 07 2025

Extensions

a(0)=1 prepended by Alois P. Heinz, Oct 12 2016

A194157 Product of first n nonzero even-indexed Fibonacci numbers F(2), F(4), F(6), ..., F(2*n).

Original entry on oeis.org

1, 3, 24, 504, 27720, 3991680, 1504863360, 1485300136320, 3838015552250880, 25964175210977203200, 459851507161617245875200, 21322394684069868456741273600, 2588389457883293541569193426124800, 822618641999347403739646931950148812800
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
a(n) is asymptotic to C2*phi^(n*(n+1))/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio. For the decimal expansion of C2 see A194159.
Product of first n terms of the binomial transform of the Fibonacci numbers. - Vaclav Kotesovec, Oct 29 2017

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Magma
    [&*[Fibonacci(2*i): i in [1..n]]: n in [1..20]]; // Vincenzo Librandi, Sep 15 2016
  • Maple
    with(combinat): A194157 :=proc(n): mul(fibonacci(2*i), i=1..n) end: seq(A194157(n), n=1..14);
  • Mathematica
    FoldList[Times, Fibonacci[2 Range[20]]] (* or *)
    Table[Round[GoldenRatio^(n(n-1)) QFactorial[n, 1/GoldenRatio^4]], {n, 20}] (* Vladimir Reshetnikov, Sep 15 2016 *)
    Table[Product[Sum[Binomial[m, k]*Fibonacci[k], {k, 1, m}], {m, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Oct 29 2017 *)
  • PARI
    {a(n) = if( n<0, 0, prod(k=1, n, fibonacci(2*k)))}; /* Michael Somos, Oct 06 2014 */
    

Formula

a(n) = Product_{i=1..n} F(2*i) with F(n) = A000045(n).
a(n) = A123029(2*n).
a(n+1)/a(n) = A001906(n+1).
0 = a(n)*(3*a(n+2)^2 - a(n+1)*a(n+3)) -a(n+1)^2*a(n+2) for all n>=0. - Michael Somos, Oct 06 2014

A194158 Product of first n nonzero odd-indexed Fibonacci numbers F(1), ..., F(2*n-1).

Original entry on oeis.org

1, 2, 10, 130, 4420, 393380, 91657540, 55911099400, 89290025741800, 373321597626465800, 4086378207619294646800, 117103340295746126693347600, 8785678105688353155168403690000, 1725665322163094950031867515982420000, 887387152950606153059937200876123854180000
Offset: 1

Views

Author

Johannes W. Meijer, Aug 21 2011

Keywords

Comments

The terms of this sequence are Fibonacci double factorial numbers.
The a(n) is asymptotic to C1*phi^(n*n)/sqrt(5)^n where phi=(1+sqrt(5))/2 is the golden ratio A001622. For the decimal expansion of C1 see A194160.

Examples

			G.f. = 1 + x + 2*x^2 + 10*x^3 + 130*x^4 + 4420*x^5 + 393380*x^6 + 91657540*x^7 + ...
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics, 6th printing with corrections. Addison-Wesley, Reading, MA, p. 478 and p. 571, 1990.

Crossrefs

Programs

  • Maple
    with(combinat): A194158 :=proc(n): mul(fibonacci(2*i-1), i=1..n) end: seq(A194158(n), n=1..15);
  • Mathematica
    Table[Product[Fibonacci[2*k - 1], {k, 1, n}], {n, 1, 30}] (* G. C. Greubel, Aug 13 2018 *)
  • PARI
    {a(n) = if( n<0, 1 / a(-n), prod(k=1, n, fibonacci(2*k - 1)))}; /* Michael Somos, Oct 07 2014 */

Formula

a(n) = Product_{i=1..n} F(2*i-1), where F(n) = A000045(n).
a(n) = A123029(2*n-1).
a(n+1)/a(n) = A001519(n+1).
a(0) = 1 by convention since empty products equal 1. - Michael Somos, Oct 07 2014
a(-n) = 1/a(n) for all n in Z. - Michael Somos, Oct 07 2014
0 = a(n)*(+a(n+1)*a(n+3) - 3*a(n+2)^2) + a(n+2)*(+a(n+1)^2) for all n in Z. - Michael Somos, Oct 07 2014
(F(1) + i)(F(3) + i)...(F(2n+1) + i) = a(n)(1 + F(2n+2)i) and (F(2n+1) + i)(1 + F(2n)i) = F(2n-1)(1 + F(2n+2)i) for all n in Z. - Michael Somos, Sep 16 2023
Showing 1-3 of 3 results.