A003293 Number of planar partitions of n decreasing across rows.
1, 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, 223, 348, 532, 811, 1224, 1834, 2725, 4031, 5914, 8638, 12540, 18116, 26035, 37262, 53070, 75292, 106377, 149738, 209980, 293473, 408734, 567484, 785409, 1083817, 1491247, 2046233, 2800125, 3821959, 5203515
Offset: 0
Examples
From _Gus Wiseman_, Jan 17 2019: (Start) The a(6) = 21 plane partitions with strictly decreasing columns (the count is the same as for strictly decreasing rows): 6 51 42 411 33 321 3111 222 2211 21111 111111 . 5 4 41 31 32 311 22 221 2111 1 2 1 2 1 1 11 1 1 . 3 2 1 (End)
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 133.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Nathaniel Johnston)
- M. S. Cheema and W. E. Conway, Numerical investigation of certain asymptotic results in the theory of partitions, Math. Comp., 26 (1972), 999-1005.
- Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
- B. Gordon and L. Houten, Notes on Plane Partitions I, J. of Comb. Theory, 4 (1968), 72-80.
- B. Gordon and L. Houten, Notes on Plane Partitions II, J. of Comb. Theory, 4 (1968), 81-99.
- Basil Gordon and Lorne Houten, Notes on plane partitions III (first page is available), Duke Math. J. Volume 36, Number 4 (1969), 801-824.
- B. Gordon and L. Houten, Notes on Plane Partitions V, Journal of Combinatorial Theory, vol. 11, issue 2, 1971, pp. 157-168.
- B. Gordon and L. Houten, Notes on Plane Partitions VI, Discrete Mathematics, vol. 26, issue 1, 1979, pp. 41-45.
- Vaclav Kotesovec, Graph - asymptotic ratio for 10000 terms.
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Richard P. Stanley, Theory and Applications of Plane Partitions: Part 2, Studies in Appl. Math., 1 (1971), 259-279.
- Richard P. Stanley, Theory and Application of Plane Partitions. Part 2, Studies in Appl. Math., 1 (1971), 259-279.
Programs
-
Maple
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n,2)=0,n,n+1)/2): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
-
Mathematica
CoefficientList[Series[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, 40}], {x, 0, 40}], x][[1 ;; 40]] (* Jean-François Alcover, Apr 18 2011, after Michael Somos *) nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+1-(-1)^k)/4),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Feb 28 2015 *) nmax = 50; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2015 *)
-
PARI
{a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n))} /* Michael Somos, Sep 19 2006 */
Formula
G.f.: Product_(1 - x^k)^{-c(k)}, c(k) = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ....
Euler transform of A110654. - Michael Somos, Sep 19 2006
a(n) ~ 2^(-3/4) * (3*Pi*Zeta(3))^(-1/2) * (n/Zeta(3))^(-49/72) * exp(3/2*Zeta(3) * (n/Zeta(3))^(2/3) + Pi^2*(n/Zeta(3))^(1/3)/24 - Pi^4/(3456*Zeta(3)) + Zeta'(-1)/2) [Basil Gordon and Lorne Houten, 1969]. - Vaclav Kotesovec, Feb 28 2015
Extensions
More terms from James Sellers, Feb 06 2000
Additional comments from Michael Somos, May 19 2000
Comments