A003436 Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
- Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93:7 (1986), 514-519.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- M. Hazewinkel and V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, CWI report AM-R9508 (1995)
- Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
- E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
- D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
- Gus Wiseman, The a(5) = 293 interlacing chord diagrams.
Crossrefs
Programs
-
Maple
A003436 := proc(n) local k; if n = 0 then 1 elif n = 1 then 0 else add( (-1)^k*binomial(n,k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!,k=0..n) ; end if; end proc: # R. J. Mathar, Dec 11 2013 A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)): seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
-
Mathematica
a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *) twounifll[{}]:={{}};twounifll[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@twounifll[Complement[set,s]]]/@Table[{i,j},{j,If[i==1,Select[set,2<#
i+1&]]}]; Table[Length[twounifll[Range[n]]],{n,0,14,2}] (* Gus Wiseman, Feb 27 2019 *)
Formula
a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016
Extensions
a(0)=1 prepended by Gus Wiseman, Feb 27 2019
Comments