A003440 Number of binary vectors with restricted repetitions.
1, 1, 3, 7, 17, 42, 104, 259, 648, 1627, 4098, 10350, 26202, 66471, 168939, 430071, 1096451, 2799072, 7154189, 18305485, 46885179, 120195301, 308393558, 791882862, 2034836222, 5232250537, 13462265079, 34657740889, 89272680921, 230069128392
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril and José L. Ramírez, Fibonacci and Catalan paths in a wall, 2023.
- K. A. Post, Binary Sequences with Restricted Repetitions, Report 74-WSK-02, Math. Dept., Tech. Univ. Eindhoven, May. 1974.
Programs
-
Mathematica
Flatten[{1,Table[Sum[(Binomial[k,n-k]+Binomial[k+1,n-k-1])^2/2,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, Feb 12 2014 *) a[r_, s_] /; r<0 || s<0 = 0; a[r_ /; 0 <= r <= 2, 0] = 1; a[r_ /; r>2, 0] = 0; a[0, s_ /; s >= 1] = 0; a[r_, s_] := a[r, s] = a[r-2, s-2] + a[r-2, s-1] + a[r-1, s-2] + a[r-1, s-1]; a[n_] := a[n, n]; Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Jan 19 2015, after given recurrence *)
-
PARI
{a(n)=polcoeff(((1-x)^2*sqrt((1+x+x^2)/(1-3*x+x^2))+x^2-1)/(2*x^2)+x*O(x^n),n)} \\ Paul D. Hanna, Mar 06 2005
-
PARI
{a(n)=if(n==0,1,sum(k=0,n,(binomial(k,n-k)+binomial(k+1,n-k-1))^2)/2)} \\ Paul D. Hanna, Mar 06 2005
Formula
G.f.: {(1-x)^2 * sqrt[(1+x+x^2)/(1-3x+x^2)] + x^2 - 1}/(2x^2) (conjectured). - Ralf Stephan, Mar 28 2004
a(n) = Sum_{k=0..n} (C(k, n-k) + C(k+1, n-k-1))^2/2 for n>0, with a(0)=1. - Paul D. Hanna, Mar 06 2005
Conjecture: (n+2)*a(n) +3*(-n-1)*a(n-1) +(n-2)*a(n-2) +(-n+1)*a(n-3) +3*(n-4)*a(n-4) +(-n+5)*a(n-5)=0. - R. J. Mathar, Jun 07 2013
Recurrence: (n-2)*(n-1)*(n+2)*a(n) = 2*(n-2)*n*(n+1)*a(n-1) + (n-1)*(n^2 - 2*n - 4)*a(n-2) + 2*(n-3)*(n-2)*n*a(n-3) - (n-4)*(n-1)*n*a(n-4). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ sqrt(6+14/sqrt(5)) * (3+sqrt(5))^n / (sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, Feb 12 2014
Equivalently, a(n) ~ phi^(2*n + 2) / (5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 08 2021
Extensions
Typo in second formula corrected by Vaclav Kotesovec, Feb 12 2014
More terms from Vincenzo Librandi, Feb 13 2014
Comments