A003445 Number of nonequivalent dissections of an n-gon into n-4 polygons by nonintersecting diagonals up to rotation.
1, 2, 8, 40, 165, 712, 2912, 11976, 48450, 195580, 784504, 3139396, 12526605, 49902440, 198499200, 788795924, 3131945190, 12428258796, 49295766000, 195464345440, 774857314042, 3071175790232, 12171403236288, 48233597481200, 191138095393700, 757436171945952
Offset: 5
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 5..200
- D. Bowman and A. Regev, Counting symmetry classes of dissections of a convex regular polygon, arXiv:1209.6270 [math.CO], 2012.
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
Programs
-
Maple
C:=n->binomial(2*n,n)/(n+1); T31:=proc(n) local t1; global C; t1 := (n-3)^2*(n-4)*C(n-2)/(4*n*(2*n-5)); if n mod 5 = 0 then t1:=t1+(4/5)*C(n/5-1) fi; if n mod 2 = 0 then t1:=t1+(n-4)*C(n/2-1)/8 fi; t1; end; [seq(T31(n),n=5..40)];
-
Mathematica
Table[t1 = (n - 3)^2*(n - 4)*CatalanNumber[n - 2]/(4*n*(2*n - 5)); If[Mod[n, 5] == 0, t1 = t1 + (4/5)*CatalanNumber[n/5 - 1]]; If[Mod[n, 2] == 0, t1 = t1 + (n - 4)*CatalanNumber[n/2 - 1]/8]; t1, {n, 5, 20}] (* T. D. Noe, Jan 03 2013 *)
-
PARI
\\ See A295495 for DissectionsModCyclic() { my(v=DissectionsModCyclic(apply(i->if(i>=3&&i<=5, y^(i-3) + O(y^3)), [1..30]))); apply(p->polcoeff(p, 2), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017
Formula
See Maple program.
Extensions
Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 25 2017
Comments