A003447 Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals rooted at a cell up to rotation and reflection.
1, 2, 7, 26, 108, 434, 1765, 7086, 28384, 113092, 449582, 1783092, 7062611, 27944394, 110494113, 436699670, 1725474562, 6816591452, 26927828642, 106375090796, 420248084468, 1660408588852, 6561147261682, 25930381015756, 102496390643352, 405212762977544
Offset: 4
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- P. Lisonek, Closed forms for the number of polygon dissections, Journal of Symbolic Computation 20 (1995), 595-601.
- Ronald C. Read, On general dissections of a polygon, Aequat. math. 18 (1978) 370-388.
Programs
-
PARI
DissectionsModDihedralRooted(v)={my(n=#v); my(q=vector(n)); q[1]=serreverse(x-sum(i=3, #v, x^i*v[i])/x + O(x*x^n)); for(i=2, n, q[i]=q[i-1]*q[1]); my(vars=variables(q[1])); my(u(m, r)=substvec(q[r]+O(x^(n\m+1)), vars, apply(t->t^m, vars))); my(R=sum(i=1, (#v-1)\2, v[2*i+1]*u(2, i)), Q=sum(i=2, #v\2, v[2*i]*u(2, i-1)), T=sum(i=3, #v, my(c=v[i]); if(c, c*sumdiv(i, d, eulerphi(d)*u(d, i/d))/i))); my(p=O(x*x^n) + (R*(x+R)/(1-Q) + Q*(u(2,1)+(x+R)^2/(1-Q)^2)/2 + T)/2); vector(n, i, polcoeff(p, i))} my(v=DissectionsModDihedralRooted(apply(i->if(i>=3&&i<=4,y^(i-3)+O(y^2)),[1..25]))); apply(p->polcoeff(p,1), v[4..#v])
Extensions
More terms from Sean A. Irvine, May 13 2015
Name clarified by Andrew Howroyd, Nov 24 2017
Comments