cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003477 Expansion of 1/((1-2x)(1+x^2)(1-x-2x^3)).

Original entry on oeis.org

1, 3, 6, 14, 33, 71, 150, 318, 665, 1375, 2830, 5798, 11825, 24039, 48742, 98606, 199113, 401455, 808382, 1626038, 3267809, 6562295, 13169814, 26416318, 52962681, 106145855, 212665582, 425965126, 853005201, 1707833095, 3418756806
Offset: 0

Views

Author

Keywords

Comments

The number of simple squares in the biggest 'cloud' of the Harter-Heighway dragon of degree (n+4). Equals the number of double points in the biggest 'cloud' of the very same. - Manfred Lindemann, Dec 06 2015

References

  • D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003230, A077949. - Manfred Lindemann, Dec 06 2015
Cf. A077854.

Programs

  • Maple
    A003477:=1/(2*z-1)/(-1+z+2*z**3)/(1+z**2); # Simon Plouffe in his 1992 dissertation
    S:=series(1/((1-x-2*x^3)*(1-2*x)*(1+x^2)), x, 101): a:=n->coeff(S, x, n):
    seq(a(n), n=0..100); # Manfred Lindemann, Dec 06 2015
    a:= gfun:-rectoproc({a(n) = 3*a(n-1)-3*a(n-2)+5*a(n-3)-6*a(n-4)+2*a(n-5)-4*a(n-6),seq(a(i)=[1,3,6,14,33,71][i+1],i=0..5)},a(n),remember):
    seq(a(n),n=0..100); # Robert Israel, Dec 14 2015
  • Mathematica
    CoefficientList[Series[1/((1-2x)(1+x^2)(1-x-2x^3)),{x,0,40}],x] (* Vincenzo Librandi, Jun 11 2012 *)
    LinearRecurrence[{3, -3, 5, -6, 2, -4}, {1, 3, 6, 14, 33, 71}, 31] (* Arie Bos, Dec 03 2019 *)
  • PARI
    Vec(1/((1-2*x)*(1+x^2)*(1-x-2*x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(0) = 1; for n > 0, a(n) = 3*a(n-1) - 3*a(n-2) + 5*a(n-3) - 6*a(n-4) + 2*a(n-5) - 4*a(n-6) (where a(n)=0 for -5 <= n <= -1). - Jon E. Schoenfield, Apr 23 2010
From Manfred Lindemann, Dec 06 2015: (Start)
a(n) = 3*a(n-1) - 2*a(n-2) + 2*a(n-3) - 4*a(n-4) + Re(i^(n-4)), a(-5)=a(-4)=a(-3)=a(-2)=0 for all integers n element Z.
a(n+2)+a(n) = A003230(n+2)-A003230(n+1). [Daykin and Tucker equation (5)]
With thrt:=(54+6*sqrt(87))^(1/3), ROR:=(thrt/6-1/thrt) and RORext:=(thrt/6+1/thrt) becomes ROC:=(1/2)*(i*sqrt(3)*RORext-ROR), where i^2=-1.
Now ROR, ROC and conjugate(ROC) are the zeros of 1-x-2*x^3.
With BR:=1/(2*ROR-3), BC:=1/(2*ROC-3) and the zeros of (1-2*x) and (1+x^2) becomes
a(n) = (1/2)*(BR*ROR^-(n+4) + BC*ROC^-(n+4) + conjugate(BC*ROC^-(n+4)) + (2/5)*(1/2)^-(n+4) + (3/10 + i*(1/10))*i^-(n+4) + conjugate((3/10 + i*(1/10))*i^-(n+4))).
Simplified: a(n) = (BR/2)*ROR^-(n+4) + Re(BC*ROC^-(n+4)) + (1/5)*(1/2)^-(n+4) + Re((3/10 + i*(1/10))*i^-(n+4)).
(End)
Conjecture: a(n) = A077854(n) + 2*(a(n-3) + a(n-4) + ... + a(1)). - Arie Bos, Nov 29 2019

Extensions

More terms from Jon E. Schoenfield, Apr 23 2010