A003503 The larger of a betrothed pair.
75, 195, 1925, 1648, 2295, 6128, 16587, 20735, 75495, 206504, 219975, 309135, 507759, 549219, 544784, 817479, 1057595, 1902215, 1331967, 1159095, 1763019, 1341495, 1348935, 1524831, 1459143, 2576945, 2226014, 2681019, 2142945, 2421704, 3220119, 3123735
Offset: 1
Examples
75 is a term because sigma(75) - 75 - 1 = 124 - 75 - 1 = 48 and 75 > 48 and sigma(48) - 48 - 1 = 124 - 48 - 1 = 75. - _David A. Corneth_, Jan 24 2019
References
- R. K. Guy, Unsolved Problems in Number Theory, B5.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..4122 (terms 1..1000 from Donovan Johnson, 1001..1126 from Amiram Eldar)
- P. Hagis and G. Lord, Quasi-amicable numbers, Math. Comp. 31 (1977), 608-611.
- David Moews, Augmented amicable pairs
- Jan Munch Pedersen, Tables of Aliquot Cycles.
- Wikipedia, Betrothed numbers.
Programs
-
Mathematica
aapQ[n_] := Module[{c=DivisorSigma[1, n]-1-n}, c!=n&&DivisorSigma[ 1, c]-1-c == n]; Transpose[Union[Sort[{#, DivisorSigma[1, #]-1-#}]&/@Select[Range[2, 10000], aapQ]]][[2]] (* Amiram Eldar, Jan 24 2019 after Harvey P. Dale at A015630 *)
-
PARI
is(n) = m = sigma(n) - n - 1; if(m < 1 || n <= m, return(0)); n == sigma(m) - m - 1 \\ David A. Corneth, Jan 24 2019
Extensions
Computed by Fred W. Helenius (fredh(AT)ix.netcom.com)
Extended by T. D. Noe, Dec 29 2011
Comments