A003508 a(1) = 1; for n>1, a(n) = a(n-1) + 1 + sum of distinct prime factors of a(n-1) that are < a(n-1).
1, 2, 3, 4, 7, 8, 11, 12, 18, 24, 30, 41, 42, 55, 72, 78, 97, 98, 108, 114, 139, 140, 155, 192, 198, 215, 264, 281, 282, 335, 408, 431, 432, 438, 517, 576, 582, 685, 828, 857, 858, 888, 931, 958, 1440, 1451, 1452, 1469, 1596, 1628, 1679, 1776, 1819, 1944
Offset: 1
Examples
a(6)=8, so a(7) = 8 + 1 + 2 = 11.
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..2000
- Doug Engel, Problem 886, Math. Mag., 48 (1975), 57-58.
Programs
-
Haskell
a003508 n = a003508_list !! (n-1) a003508_list = 1 : map (\x -> x + 1 + sum (takeWhile (< x) $ a027748_row x)) a003508_list -- Reinhard Zumkeller, Jan 15 2015
-
Mathematica
a[1] = 1; a[n_] := a[n] = a[n - 1] + 1 + Plus @@ Select[ Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[ a[n - 1]]], # < a[n - 1] &]; Table[ a[n], {n, 54}] (* Robert G. Wilson v, Apr 13 2005 *) nxt[n_]:=n+1+Total[Select[Transpose[FactorInteger[n]][[1]],#
Harvey P. Dale, Jul 19 2015 *)
Extensions
More terms from Henry Bottomley, May 09 2000
Comments