A003573 Order of 4 mod 4n+1.
1, 2, 3, 6, 4, 3, 10, 14, 5, 18, 10, 6, 21, 26, 9, 30, 6, 11, 9, 15, 27, 4, 11, 5, 24, 50, 6, 18, 14, 6, 55, 50, 7, 9, 34, 23, 14, 74, 12, 26, 33, 10, 78, 86, 29, 90, 18, 9, 48, 98, 33, 10, 45, 35, 15, 12, 30, 38, 29, 39, 12, 42, 41, 55, 8, 42, 26, 134, 6, 46, 35
Offset: 0
Keywords
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..10000
Programs
-
GAP
List([0..70],n->OrderMod(4,4*n+1)); # Muniru A Asiru, Feb 16 2019
-
Maple
a := n -> `if`(n=0, 1, numtheory:-order(4, 4*n+1)): seq(a(n), n = 0..68);
-
Mathematica
Table[MultiplicativeOrder[4, 4*n + 1], {n, 0, 70}] (* Arkadiusz Wesolowski, Nov 27 2012 *)
-
PARI
a(n) = znorder(Mod(4, 4*n+1)); \\ Michel Marcus, Feb 16 2019
-
Sage
def A003573(n): s, m, N = 0, 1, 4*n + 1 while True: k = N + m v = valuation(k, 4) s += v m = k // 4^v if m == 1: break return s print([A003573(n) for n in (0..70)]) # Peter Luschny, Oct 07 2017
Formula
a(n) = A053447(2*n) for n >= 0. - Jianing Song, Oct 03 2022
Extensions
a(0) = 1 added by Peter Luschny, Oct 07 2017