A003624 Duffinian numbers: composite numbers k relatively prime to sigma(k).
4, 8, 9, 16, 21, 25, 27, 32, 35, 36, 39, 49, 50, 55, 57, 63, 64, 65, 75, 77, 81, 85, 93, 98, 100, 111, 115, 119, 121, 125, 128, 129, 133, 143, 144, 155, 161, 169, 171, 175, 183, 185, 187, 189, 201, 203, 205, 209, 215, 217, 219, 221, 225, 235, 237, 242, 243, 245, 247
Offset: 1
Keywords
Examples
4 is in the sequence since it is not a prime, its divisors 1, 2, and 4 sum to 7, and gcd(7, 4) = 1. 21 is in the sequences since it is not a prime, and its divisors 1, 3, 7, and 21 sum to 32, which is coprime to 21.
References
- T. Koshy, Elementary number theory with applications, Academic Press, 2002, p. 141, exerc. 6,7,8 and 9.
- L. Richard Duffy, The Duffinian numbers, Journal of Recreational Mathematics 12 (1979), pp. 112-115.
- Peter Heichelheim, There exist five Duffinian consecutive integers but not six, Journal of Recreational Mathematics 14 (1981-1982), pp. 25-28.
- J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 64.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Florian Luca, On the densities of some subsets of integers, Missouri Journal of Mathematical Sciences 19:3 (2007), pp. 167-170.
- Rose Mary Zbiek, What can we say about the Duffinian numbers?, The Pentagon 42:2 (1983), pp. 99-109.
Programs
-
Haskell
a003624 n = a003624_list !! (n-1) a003624_list = filter ((== 1) . a009194) a002808_list -- Reinhard Zumkeller, Mar 23 2013
-
Mathematica
fQ[n_] := n != 1 && !PrimeQ[n] && GCD[n, DivisorSigma[1, n]] == 1; Select[ Range@ 280, fQ]
-
PARI
is(n)=gcd(n,sigma(n))==1&&!isprime(n) \\ Charles R Greathouse IV, Feb 13 2013
-
Python
from math import gcd from itertools import count, islice from sympy import isprime, divisor_sigma def A003624_gen(startvalue=2): # generator of terms return filter(lambda k:not isprime(k) and gcd(k,divisor_sigma(k))==1,count(max(startvalue,2))) A003624_list = list(islice(A003624_gen(),30)) # Chai Wah Wu, Jul 06 2023
Formula
a(n) >> n log log log n, see Luca. (Clearly excluding the primes only makes the n-th term larger.) - Charles R Greathouse IV, Feb 17 2014
Comments