cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A373968 a(n) is the number of divisors of n that are Duffinian numbers (A003624).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 0, 0, 4, 0, 0, 1, 3, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 3, 1, 2, 0, 1, 0, 2, 1, 2, 1, 0, 0, 1, 0, 0, 3, 5, 1, 0, 0, 1, 0, 1, 0, 4, 0, 0, 2, 1, 1, 1, 0, 3, 3, 0, 0, 2, 1, 0, 0, 2
Offset: 1

Views

Author

Marius A. Burtea, Jul 12 2024

Keywords

Examples

			Since A003624(1) = 4 then a(1) = a(2) = a(3) = 0 and a(4) = 1.
a(8) = 2 because 8 has the divisors 4 = A003624(1) and 8 = A003624(2).
		

Crossrefs

Programs

  • Magma
    f:=func; [#[d:d in Divisors(k)|f(d)]:k in [1..100]];
  • Mathematica
    a[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; Array[a, 100] (* Amiram Eldar, Jul 19 2024 *)

Formula

a(p^k) = k - 1, for p prime and k >= 1.

A373892 a(n) is the smallest number that can be partitioned in exactly n ways as the sum of two Duffinian numbers (A003624).

Original entry on oeis.org

1, 8, 25, 43, 84, 71, 102, 160, 150, 219, 226, 196, 244, 350, 328, 300, 330, 354, 400, 386, 448, 408, 434, 390, 510, 536, 462, 546, 570, 624, 608, 740, 722, 690, 714, 770, 726, 660, 750, 804, 842, 858, 876, 870, 932, 914, 924, 840, 986, 1038, 966, 1108, 1050, 1056
Offset: 0

Views

Author

Marius A. Burtea, Jul 12 2024

Keywords

Examples

			1 cannot be written as the sum of two Duffinian numbers, so a(0) = 1.
The numbers from 2 to 7 cannot be written as the sum of two Duffinian numbers and 8 = 4 + 4 = A003624(1) + A003624(1), so a(1) = 8.
25 = 4 + 21 = 9 + 16 and 4 = A003624(1), 9 = A003624(3), 16 = A003624(4), 21 = A003624(5) and the numbers 9 to 24 cannot be written in two ways as a sum of two Duffinian numbers. Thus a(2) = 25.
		

Crossrefs

Cf. A003624.

Programs

  • Magma
    f:=func; b:=[n: n in [1..2000] |f(n)]; a:=[]; for n in [0..60] do k:=1; while #RestrictedPartitions(k,2,Set(b)) ne n do k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    dufQ[n_] := CompositeQ[n] && CoprimeQ[n, DivisorSigma[1, n]]; f[n_] := Sum[If[dufQ[k] && dufQ[n - k], 1, 0], {k, 1, Floor[n/2]}]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[54, 2000] (* Amiram Eldar, Jul 19 2024 *)

A373969 The smallest number k whose divisors include exactly n Duffinian numbers (A003624).

Original entry on oeis.org

1, 4, 8, 16, 32, 64, 128, 256, 512, 576, 1152, 1600, 2304, 4608, 3600, 6300, 7200, 18900, 20736, 32725, 14400, 28800, 50400, 56700, 108900, 57600, 100800, 111321, 176400, 129600, 226800, 229075, 360000, 630000, 435600, 333963, 518400, 1374450, 871200, 1001889
Offset: 0

Views

Author

Marius A. Burtea, Jul 12 2024

Keywords

Comments

Numbers of the form m = 2^(k+1), k >= 0, have exactly k divisors that are Duffinian numbers.

Examples

			Since A003624(1) = 4, a(0) = 1.
The numbers 2 and 3 have no divisors that are Duffinian numbers and 4 = A003624(1), so a(1) = 4.
		

Crossrefs

Programs

  • Magma
    f:=func; a:=[]; for n in [0..38] do k:=1; while #[d:d in Divisors(k)|f(d)] ne n do  k:=k+1; end while; Append(~a,k); end for; a;
  • Mathematica
    f[n_] := DivisorSum[n, 1 &, CompositeQ[#] && CoprimeQ[#, DivisorSigma[1, #]] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[30, 10^7] (* Amiram Eldar, Jul 19 2024 *)

A009194 a(n) = gcd(n, sigma(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 1, 2, 1, 28, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 10, 1, 6, 1, 4, 3, 2, 1, 4, 1, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 28, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2
Offset: 1

Views

Author

Keywords

Comments

LCM of common divisors of n and sigma(n). It equals n if n is multiply perfect (A007691). - Labos Elemer, Aug 14 2002

Crossrefs

Programs

Formula

A000005(a(n)) = A073802(n). - Reinhard Zumkeller, Mar 12 2010
A006530(a(n)) = A082062(n). - Reinhard Zumkeller, Jul 10 2011
a(A014567(n)) = 1; A069059(a(n)) > 1. - Reinhard Zumkeller, Mar 23 2013
a(n) = n/A017666(n). - Antti Karttunen, May 22 2017

A014567 Numbers k such that k and sigma(k) are relatively prime, where sigma(k) = sum of divisors of k (A000203).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 36, 37, 39, 41, 43, 47, 49, 50, 53, 55, 57, 59, 61, 63, 64, 65, 67, 71, 73, 75, 77, 79, 81, 83, 85, 89, 93, 97, 98, 100, 101, 103, 107, 109, 111, 113, 115, 119, 121, 125, 127, 128, 129, 131, 133
Offset: 1

Views

Author

Keywords

Comments

Related to "solitary numbers": n is solitary if there is no other integer m such that sigma(m)/m = sigma(n)/n.
It is easy to show that if n and sigma(n) are relatively prime then n is solitary. But the converse is not true; for example, 18, 45, 48 and 52 are solitary. Probably also 10, 14, 15, 20, 22 and many others are solitary, but I do not think that will ever be proved. - Dean Hickerson
From Daniel Forgues, Jun 23 2009: (Start)
Union of unit, primes and Duffinian numbers.
Duffinian numbers (A003624) are the composite numbers (including, among others, the proper prime powers) for which (n, sigma(n)) = 1. (End)
A009194(a(n)) = 1. - Reinhard Zumkeller, Mar 23 2013
These numbers satisfy (denominator of sigma(n)/n) = n. - Michel Marcus, Oct 27 2013
The asymptotic density of this sequence is 0 (Dressler, 1974; Luca, 2007). - Amiram Eldar, Jul 23 2020
If m*n is in this sequence and gcd(m,n) = 1, then m and n are both in this sequence. - Jianing Song, Aug 07 2022

Examples

			sigma(21) = 1 + 3 + 7 + 21 = 32 is relatively prime to 21, so 21 is in the sequence.
		

Crossrefs

Cf. A003624.
Cf. A069059 (complement).
Includes A000961 as a subsequence.

Programs

  • Haskell
    a014567 n = a014567_list !! (n-1)
    a014567_list = filter ((== 1) . a009194) [1..]
    -- Reinhard Zumkeller, Mar 23 2013
    
  • Mathematica
    lst={};Do[d=DivisorSigma[1, n];If[GCD[d, n]==1, AppendTo[lst, n]], {n, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
    Select[Range[150],CoprimeQ[#,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jan 23 2015 *)
  • PARI
    is(n)=gcd(n,sigma(n))==1 \\ Charles R Greathouse IV, Feb 13 2013
    
  • Python
    from math import gcd
    from sympy import divisor_sigma
    def ok(n): d = divisor_sigma(n, 1); return gcd(n, d) == 1
    print([k for k in range(1, 134) if ok(k)]) # Michael S. Branicky, Mar 28 2022

Formula

a(n) << n log n. Can this be improved? - Charles R Greathouse IV, Feb 13 2013
a(n) >> n log log log n, see Luca. - Charles R Greathouse IV, Feb 17 2014

Extensions

More terms from Labos Elemer

A248020 Numbers which are coprime to the sum of their divisors, but are neither primes nor perfect powers.

Original entry on oeis.org

21, 35, 39, 50, 55, 57, 63, 65, 75, 77, 85, 93, 98, 111, 115, 119, 129, 133, 143, 155, 161, 171, 175, 183, 185, 187, 189, 201, 203, 205, 209, 215, 217, 219, 221, 235, 237, 242, 245, 247, 253, 259, 265, 275, 279, 291, 299, 301, 305, 309, 319, 323, 325, 327, 329, 333, 335, 338, 341
Offset: 1

Views

Author

Robert G. Wilson v, Sep 29 2014

Keywords

Comments

Intersection of A003624 and A106543. - Michel Marcus, Sep 30 2014
Duffinian numbers (A003624) which are not perfect powers (A001597). - Robert G. Wilson v, Oct 02 2014

Examples

			21 is in the sequence since it is neither a prime nor a powerful number and its divisors 1, 3, 7, and 21 sum to 32, which is coprime to 21.
50 is in the sequence since it is neither a prime nor a powerful number and its divisors 1, 2, 5, 10, 25, and 50 sum to 93, which is coprime to 50.
		

Programs

  • Mathematica
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[ Range@ 350, !PrimeQ[ #] && GCD[#, DivisorSigma[1, #]] == 1 && !perfectPowerQ[ #] &]
    cpQ[n_]:=CoprimeQ[n,DivisorSigma[1,n]]&&!PrimeQ[n]&&GCD@@ FactorInteger[ n][[All,2]]<2; Select[Range[2,400],cpQ] (* Harvey P. Dale, Oct 05 2020 *)
  • PARI
    forcomposite(n=1, 1e3, if(gcd(n, sigma(n))==1, if(!ispower(n), print1(n, ", ")))) \\ Felix Fröhlich, Oct 25 2014

A248022 Achilles numbers which are coprime to the sum of their divisors.

Original entry on oeis.org

392, 800, 968, 1352, 2312, 2888, 3087, 3267, 3872, 4232, 5408, 6075, 6125, 6272, 6728, 7688, 7803, 9248, 10952, 11552, 12800, 13448, 14283, 14792, 15125, 15488, 16928, 17672, 19208, 20000, 21632, 22472, 22707, 25088, 26912, 27783, 27848, 29403, 29768, 30752, 33275
Offset: 1

Views

Author

Robert G. Wilson v, Sep 29 2014

Keywords

Crossrefs

Intersection of A052486 and A003624. - Michel Marcus, Sep 30 2014

Programs

  • Mathematica
    achillesQ[n_] := Block[{ls = Last /@ FactorInteger@ n}, Min@ ls > 1 == GCD @@ ls]; Select[ Range@ 35000, achillesQ[ #] && GCD[#, DivisorSigma[1, #]] == 1 &]

A248023 Even numbers which are neither primes nor perfect powers and are coprime to the sum of their divisors.

Original entry on oeis.org

50, 98, 242, 338, 392, 578, 722, 800, 968, 1058, 1250, 1352, 1682, 1922, 2312, 2450, 2738, 2888, 3362, 3698, 3872, 4232, 4418, 4802, 5408, 5618, 6050, 6272, 6728, 6962, 7442, 7688, 8450, 8978, 9248, 10082, 10658, 10952, 11552, 12482, 12800, 13448, 13778, 14450
Offset: 1

Views

Author

Robert G. Wilson v, Sep 29 2014

Keywords

Examples

			50 is in the sequence since it is neither a prime nor a powerful number and its divisors 1, 2, 5, 10, 25, and 50 sum to 93, which is coprime to 50.
		

Crossrefs

Programs

  • Mathematica
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[ 2 Range@ 7500, !PrimeQ[ #] && GCD[#, DivisorSigma[1, #]] == 1 && !perfectPowerQ[ #] &]
  • PARI
    lista(nn) = {forstep(n=4, nn, 2, if (!ispower(n) && (gcd(n, sigma(n))==1), print1(n, ", ")););} \\ Michel Marcus, Oct 02 2014

A280946 Numbers n such that n and number of proper divisors (A032741) of n are relatively prime and n is a nonprime (A018252).

Original entry on oeis.org

1, 8, 9, 10, 12, 14, 18, 22, 24, 25, 26, 28, 30, 32, 34, 35, 38, 40, 44, 46, 49, 52, 54, 55, 58, 60, 62, 63, 65, 66, 68, 72, 74, 76, 77, 78, 80, 81, 82, 84, 85, 86, 88, 90, 91, 92, 94, 95, 96, 98, 99, 102, 104, 106, 108, 110, 112, 114, 115, 116, 117, 118, 119, 121, 122, 124, 125, 126, 128, 130, 133, 134, 135, 136, 138
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 11 2017

Keywords

Comments

Numbers n such that A125168(n) = 1 and A010051(n) = 0.
Numbers n such that gcd(n,A032741(n)) = 1 and A000005(n) != 2.

Examples

			12 is in the sequence because 12 is a nonprime, 12 has 5 proper divisors {1, 2, 3, 4, 6} and gcd(12,5) = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[139], CoprimeQ[#1, DivisorSigma[0, #1] - 1] && !PrimeQ[#1] & ]
    Select[Range[139], GCD[#1, DivisorSigma[0, #1] - 1] == 1 && DivisorSigma[0, #1] != 2 &]
  • PARI
    isok(n) = gcd(n, numdiv(n)-1) == 1; \\ Michel Marcus, Jan 14 2017

A280387 Composite numbers n such that sum of proper divisors of n divides sum of proper divisors of n^n.

Original entry on oeis.org

4, 8, 9, 16, 21, 25, 27, 32, 36, 45, 49, 64, 81, 87, 91, 99, 121, 125, 128, 144, 169, 196, 217, 243, 256, 289, 325, 343, 361, 400, 417, 481, 512, 529, 559, 625, 685, 697, 703, 721, 729, 745, 749, 775, 801, 841, 925, 931, 961, 1024, 1156, 1157, 1261, 1331
Offset: 1

Views

Author

Altug Alkan, Jan 01 2017

Keywords

Comments

Terms are 2^2, 2^3, 3^2, 2^4, 3*7, 5^2, 3^3, 2^5, 2^2*3^2, 3^2*5, 7^2, 2^6, 3^4, 3*29, 7*13, 3^2*11, 11^2, 5^3, ...
Terms that are not Duffinian numbers are 45, 87, 91, 99, 196, 703, 745, 775, 801, 931, ...

Examples

			Composite number 21 is a term because (sigma(21) - 21) = 11 divides (sigma(21^21) - 21^21) = 4381940263463668467705506011
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], And[CompositeQ@ #, Divisible @@ Map[DivisorSigma[1, #] - # &, {#^#, #}]] &] (* Michael De Vlieger, Jan 02 2017 *)
  • PARI
    is(n) = !isprime(n) && (sigma(n^n)-n^n)%(sigma(n)-n)==0;

Extensions

More terms from Amiram Eldar, Feb 19 2019
Showing 1-10 of 11 results. Next