A003630 Inert rational primes in Q[sqrt(3)].
5, 7, 17, 19, 29, 31, 41, 43, 53, 67, 79, 89, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 199, 211, 223, 233, 257, 269, 271, 281, 283, 293, 307, 317, 331, 353, 367, 379, 389, 401, 439, 449, 461, 463, 487, 499, 509, 521, 523, 547, 557, 569, 571, 593
Offset: 1
Examples
Since (-1)*(1 - sqrt(3))*(1 + sqrt(3)) = 2, 2 is not in the sequence. 3 is not in the sequence for obvious reasons. x^2 == 3 (mod 5) has no solution, which means that 5 is an inert prime in Z[sqrt(3)]. Therefore, 5 is in the sequence.
References
- H. Hasse, Number Theory, Springer-Verlag, NY, 1980, p. 498.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
Programs
-
Mathematica
Select[Prime[Range[2, 200]], JacobiSymbol[3, #] == -1 &] (* Alonso del Arte, Mar 26 2017 *)
-
PARI
{a(n) = local( cnt, m ); if( n<1, return( 0 )); while( cnt < n, if( isprime( m++) && kronecker( 12, m )== -1, cnt++ )); m} /* Michael Somos, Aug 14 2012 */
Comments