cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A035194 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 12.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 2, 1, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 1, 2, 2, 1, 0, 0, 2, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

Coefficients of Dedekind zeta function for the quadratic number field of discriminant 12. See A002324 for formula and Maple code. - N. J. A. Sloane, Mar 22 2022

Crossrefs

Dedekind zeta functions for imaginary quadratic number fields of discriminants -3, -4, -7, -8, -11, -15, -19, -20 are A002324, A002654, A035182, A002325, A035179, A035175, A035171, A035170, respectively.
Dedekind zeta functions for real quadratic number fields of discriminants 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40 are A035187, A035185, A035194, A035195, A035199, A035203, A035188, A035210, A035211, A035215, A035219, A035192, respectively.

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[12, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=12); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(12, d)); \\ Amiram Eldar, Nov 18 2023

Formula

Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = log(2+sqrt(3))/sqrt(3) = 0.760345... (A196530). - Amiram Eldar, Oct 11 2022
From Amiram Eldar, Nov 18 2023: (Start)
a(n) = Sum_{d|n} Kronecker(12, d).
Multiplicative with a(p^e) = 1 if Kronecker(12, p) = 0 (p = 2 or 3), a(p^e) = (1+(-1)^e)/2 if Kronecker(12, p) = -1 (p is in A003630), and a(p^e) = e+1 if Kronecker(12, p) = 1 (p is in A097933). (End)

A097933 Primes p that divide 3^((p-1)/2) - 1.

Original entry on oeis.org

11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577, 587, 599, 601, 613
Offset: 1

Views

Author

Cino Hilliard, Sep 04 2004

Keywords

Comments

Rational primes that decompose in the field Q[sqrt(3)]. - N. J. A. Sloane, Dec 26 2017
For all primes p > 2 and integers gcd(x, y, p) = 1, x^((p-1)/2) +- y^((p-1)/2) is divisible by p. This is because (x^((p-1)/2) - y^((p-1)/2))(x^((p-1)/2) + y^((p-1)/2)) = x^(p-1) - y^(p-1) is divisible by p according to Fermat's Little Theorem (FLT). This sequence lists p that divides 3^((p-1)/2) - 1^((p-1)/2), and A003630 lists the '+' case.
Apart from initial terms, this and A038874 are the same. - N. J. A. Sloane, May 31 2009
Primes in A091998. - Reinhard Zumkeller, Jan 07 2012
Also, primes congruent to 1 or 11 (mod 12). - Vincenzo Librandi, Mar 23 2013
Conjecture: Let r(n) = (a(n) - 1)/(a(n) + 1) if a(n) mod 4 = 1, (a(n) + 1)/(a(n) - 1) otherwise; then Product_{n>=1} r(n) = (6/5) * (6/7) * (12/11) * (18/19) * ... = 2/sqrt(3). - Dimitris Valianatos, Mar 27 2017
Primes p such that Kronecker(12,p) = +1 (12 is the discriminant of Q[sqrt(3)]), that is, odd primes that have 3 as a quadratic residue. - Jianing Song, Nov 21 2018
Comment from Richard R. Forberg, Feb 07 2023: (Start)
Conjecture: These are the exclusive prime factors of the set of integers d > 1 such that there exist primitive Heronian triangles with sides {b, b+d, b+2d} for one or more integers b.
Also b is always > d. For d=11 the b values begin {15, 17, 65, 75, 267, 305, 1025, ...}. For d=1 (not prime, thus not listed) the b values are given by A016064. (End)

Examples

			For p = 5, 3^2 - 1 = 8 <> 3*k for any integer k, so 5 is not in this sequence.
For p = 11, 3^5 - 1 = 242 = 11*22, so 11 is in this sequence.
		

Crossrefs

Programs

  • Haskell
    a097933 n = a097933_list !! (n-1)
    a097933_list = [x | x <- a091998_list, a010051 x == 1]
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [p: p in PrimesUpTo(1000) | p mod 24 in [1, 11, 13, 23]]; // Vincenzo Librandi, Mar 23 2013
  • Mathematica
    Select[Prime[Range[300]], MemberQ[{1, 11, 13, 23}, Mod[#, 24]]&] (* Vincenzo Librandi, Mar 23 2013 *)
    Select[Prime[Range[2,200]],PowerMod[3,(#-1)/2,#]==1&] (* Harvey P. Dale, Jun 02 2020 *)
  • PARI
    /* s = +-1, d=diff */ ptopm1d2(n,x,d,s) = { forprime(p=3,n,p2=(p-1)/2; y=x^p2 + s*(x-d)^p2; if(y%p==0,print1(p","))) }
    
  • PARI
    {a(n)= local(m, c); if(n<1, 0, c=0; m=0; while( cMichael Somos, Aug 28 2006 */
    

A025021 Numbers whose least quadratic nonresidue (A020649) is 3.

Original entry on oeis.org

7, 14, 17, 31, 34, 41, 49, 62, 79, 82, 89, 98, 103, 113, 119, 127, 137, 151, 158, 161, 178, 199, 206, 217, 223, 226, 233, 238, 254, 257, 271, 274, 281, 287, 289, 302, 322, 329, 343, 353, 367, 391, 398, 401, 434, 439, 446, 449, 463, 466, 487, 497, 511, 514, 521, 527, 542
Offset: 1

Views

Author

Keywords

Comments

n such that n is not divisible by 4, all primes dividing n are in A038873, and at least one prime dividing n is in A003630. - Robert Israel, Jul 19 2017

Crossrefs

Programs

  • Maple
    select(t -> numtheory:-quadres(2,t) = 1 and numtheory:-quadres(3,t)=-1, [$1..1000]); # Robert Israel, Jul 19 2017
  • Mathematica
    Select[Range[500], Min @ Complement[Range[# - 1], Mod[Range[#/2]^2, #]] == 3 &] (* Amiram Eldar, Oct 31 2020 *)
  • PARI
    residue(n,m)={local(r);r=0;for(i=1,floor(m/2),if(i^2%m==n,r=1));r}
    isA025021(n)=residue(2,n) && !residue(3,n) \\ Michael B. Porter, Apr 18 2010

A038875 Primes p with legendre(3,p) = -1.

Original entry on oeis.org

2, 5, 7, 17, 19, 29, 31, 41, 43, 53, 67, 79, 89, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 199, 211, 223, 233, 257, 269, 271, 281, 283, 293, 307, 317, 331, 353, 367, 379, 389, 401, 439, 449, 461, 463, 487, 499, 509, 521, 523, 547, 557, 569, 571, 593
Offset: 1

Views

Author

Keywords

Comments

Apart from the first term, primes p such that 3 is not a square mod p.
Apart from the first term, identical to A003630.

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range[120], JacobiSymbol[3, #] == -1 &] (* Vincenzo Librandi, Sep 09 2012 *)
  • PARI
    isok(p) = isprime(p) && (kronecker(3, p) == -1); \\ Michel Marcus, Jan 24 2023

Extensions

Edited by D. S. McNeil, R. J. Mathar and N. J. A. Sloane, Aug 15 2010

A038877 Primes p such that 6 is not a square mod p.

Original entry on oeis.org

7, 11, 13, 17, 31, 37, 41, 59, 61, 79, 83, 89, 103, 107, 109, 113, 127, 131, 137, 151, 157, 179, 181, 199, 223, 227, 229, 233, 251, 257, 271, 277, 281, 347, 349, 353, 367, 373, 397, 401, 419, 421, 439, 443, 449
Offset: 1

Views

Author

Keywords

Comments

Contribution from Cino Hilliard, Sep 06 2004: (Start)
Also primes p such that p divides 3^(p-1)/2 + 2^(p-1)/2.
Also primes p such that p divides 6^(p-1)/2 + 1.
Also primes p such that p divides 6^(p-1)/2 + 4^(p-1)/2. (End)
Inert rational primes in the field Q(sqrt(6)). - Alonso del Arte, Oct 14 2012
Primes congruent to 7, 11, 13, or 17 mod 24.

Examples

			17 is in the sequence because there is no solution to the equation x^2 - 6y = 17 in integers.
19 is NOT in the sequence because x^2 - 6y = 19 has solutions in integers, as does x^2 - 6y^2 = 19, e.g., x = 5, y = 1, and therefore (5 - sqrt(6))*(5 + sqrt(6)) = 19.
		

Crossrefs

Cf. A003630.

Programs

  • Mathematica
    Select[Prime@Range[120], JacobiSymbol[6, #] == -1 &] (* Vincenzo Librandi, Sep 08 2012 *)
  • PARI
    forprime(p=2,500,if(kronecker(6,p)==-1, print1(p,", ")));
    /* Joerg Arndt, Oct 15 2012 */

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Oct 15 2012

Extensions

Offset changed from 0 to 1 by Vincenzo Librandi, Sep 08 2012

A258328 L.g.f.: log(1 + Sum_{n>=1} x^(n^2) + x^(3*n^2) ).

Original entry on oeis.org

1, -1, 4, -1, 1, -4, 1, -1, 13, -11, 12, -16, 14, -15, 19, -1, 1, -13, 1, -11, 25, -12, 24, -40, 26, -14, 40, -15, 1, -29, 1, -1, 48, -35, 36, -61, 38, -39, 56, -11, 1, -39, 1, -12, 73, -24, 48, -88, 50, -36, 55, -14, 1, -40, 12, -15, 61, -59, 60, -101, 62, -63, 97, -1, 14, -48, 1, -35, 96, -60, 72, -157, 74, -38, 119, -39, 12, -56, 1, -11, 121, -83, 84, -135, 86, -87, 91, -12, 1, -83, 14, -24, 97, -48, 96, -184, 98, -64, 156, -36, 1, -89, 1, -14, 180, -107, 108, -196, 110, -132, 152, -15, 1, -99, 24, -59, 182, -60, 120, -245, 133
Offset: 1

Views

Author

Paul D. Hanna, Jun 03 2015

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + 4*x^3/3 - x^4/4 + x^5/5 - 4*x^6/6 + x^7/7 - x^8/8 + 13*x^9/9 - 11*x^10/10 + 12*x^11/11 - 16*x^12/12 + 14*x^13/13 - 15*x^14/14 + 19*x^15/15 - x^16/16 +...+ a(n)*x^n/n +...
where
exp(L(x)) = 1 + x + x^3 + x^4 + x^9 + x^12 + x^16 + x^25 + x^27 + x^36 + x^48 + x^49 + x^64 + x^75 + x^81 + x^100 + x^108 +...+ x^(n^2) + x^(3*n^2) +...
Note that for n>1, a(n) = +1 at positions:
[5, 7, 17, 19, 29, 31, 41, 43, 53, 67, 79, 89, 101, 103, 113, 127, ...];
which appears to be A003630 (primes p such that 3 is not a square mod p).
		

Crossrefs

Programs

  • PARI
    {a(n) = local(L=x); L = log(1 + sum(k=1,sqrtint(n+1), x^(k^2) + x^(3*k^2)) +x*O(x^n)); n*polcoeff(L,n)}
    for(n=1,121, print1(a(n),", "))

Formula

a(n) = -1 iff n = 2^k for k>=1 [conjecture].
a(p) = +1 for primes p such that 3 is not a square mod p (A003630), and a(n) = +1 nowhere else except at n=0 [conjecture].

A296933 Primes p such that Legendre(3,p) = 0 or 1.

Original entry on oeis.org

3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Crossrefs

This is A038874 without the initial 2.

Programs

  • Maple
    # Load the Maple program HH given in A296920. Then run HH(3, 200); This produces A097933, A003630, this sequence, and A038875.
  • Mathematica
    Join[{3}, Select[Prime[Range[200]], JacobiSymbol[3, #] == 1 &]] (* Paolo Xausa, May 11 2024 *)
Showing 1-7 of 7 results.