cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091338 a(n) = (3/n), where (k/n) is the Kronecker symbol.

Original entry on oeis.org

1, -1, 0, 1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0, -1, 1, 0, 1, 1, 0, 1, 1, 0, 1, -1, 0, -1, -1, 0, -1, 1, 0, 1, -1, 0, -1, -1, 0, -1, -1, 0, 1, 1, 0, 1, 1, 0, -1, -1, 0, -1, 1, 0, -1, 1, 0, 1, -1, 0, 1, -1, 0
Offset: 1

Views

Author

Eric W. Weisstein, Dec 30 2003

Keywords

Comments

a(2n+1) has period 6, i.e., if n == 1 (mod 2) then a(n+12) = a(n). A.H.M. Smeets, Jan 23 2018

Programs

  • Magma
    [KroneckerSymbol(3,n): n in [1..100]]; // Vincenzo Librandi, Aug 16 2016
  • Maple
    A091338 := proc(n)
            numtheory[jacobi](3,n) ;
    end proc: # R. J. Mathar, Nov 03 2011
  • Mathematica
    Table[KroneckerSymbol[3, n], {n, 1, 100}] (* Vincenzo Librandi, Aug 16 2016 *)
  • PARI
    a(n)=kronecker(3,n)
    

Formula

If n==0 (mod 3) a(n)=0; for p ==1 or 11 (mod 12) (i.e., p>3 in A038874), a(p)=+1; for p==2, 5 or 7 (mod 12) (i.e., p in A038875), a(p)=-1. - Benoit Cloitre, Jan 03 2004
From A.H.M. Smeets, Aug 01 2018: (Start)
Conjecture:
a(n) = 0 if and only if (n mod 3 = 0),
a(n) = 1 if (n mod 12 = 1 or n mod 12 = 11 or n mod 48 = 4 or n mod 48 = 44),
a(n) = -1 if (n mod 12 = 5 or n mod 12 = 7 or n mod 48 = 20 or n mod 48 = 28),
a(2) = -1, a(12*n+10) = -a(12*n+2) and a(12*n+14) = a(12*n+10) for n >= 0,
a(24*n+8) = -a(12*n+4) and a(24*n+16) = -a(12*n+4) for n >= 0. (End)
From A.H.M. Smeets, Aug 01 2018: (Start)
a(2*n+1) = 1 if and only if (n mod 6 = 0 or n mod 6 = 5),
a(2*n+1) = -1 if and only if (n mod 6 = 2 or n mod 6 = 3),
a(2*n+1) = 0 if and only if n mod 3 = 1,
a(2*n) = -a(n). (End)

Extensions

More terms from Benoit Cloitre, Jan 03 2004

A035186 Coefficients in expansion of Dirichlet series Product_p (1-(Kronecker(m,p)+1)*p^(-s)+Kronecker(m,p)*p^(-2s))^(-1) for m = 3.

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 2, 1, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 0, 0, 0, 0, 2, 0, 2, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n < 0, 0, DivisorSum[n, KroneckerSymbol[3, #] &]]; Table[ a[n], {n, 1, 100}] (* G. C. Greubel, Apr 27 2018 *)
  • PARI
    my(m=3); direuler(p=2,101,1/(1-(kronecker(m,p)*(X-X^2))-X))
    
  • PARI
    a(n) = sumdiv(n, d, kronecker(3, d)); \\ Amiram Eldar, Nov 20 2023

Formula

From Amiram Eldar, Oct 17 2022: (Start)
a(n) = Sum_{d|n} Kronecker(3, d).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*log(2+sqrt(3)) / (3*sqrt(3)) = 0.506897... . (End)
Multiplicative with a(3^e) = 1, a(p^e) = (1+(-1)^e)/2 if Kronecker(3, p) = -1 (p is in A038875), and a(p^e) = e+1 if Kronecker(3, p) = 1 (p is in A097933). - Amiram Eldar, Nov 20 2023

A258328 L.g.f.: log(1 + Sum_{n>=1} x^(n^2) + x^(3*n^2) ).

Original entry on oeis.org

1, -1, 4, -1, 1, -4, 1, -1, 13, -11, 12, -16, 14, -15, 19, -1, 1, -13, 1, -11, 25, -12, 24, -40, 26, -14, 40, -15, 1, -29, 1, -1, 48, -35, 36, -61, 38, -39, 56, -11, 1, -39, 1, -12, 73, -24, 48, -88, 50, -36, 55, -14, 1, -40, 12, -15, 61, -59, 60, -101, 62, -63, 97, -1, 14, -48, 1, -35, 96, -60, 72, -157, 74, -38, 119, -39, 12, -56, 1, -11, 121, -83, 84, -135, 86, -87, 91, -12, 1, -83, 14, -24, 97, -48, 96, -184, 98, -64, 156, -36, 1, -89, 1, -14, 180, -107, 108, -196, 110, -132, 152, -15, 1, -99, 24, -59, 182, -60, 120, -245, 133
Offset: 1

Views

Author

Paul D. Hanna, Jun 03 2015

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + 4*x^3/3 - x^4/4 + x^5/5 - 4*x^6/6 + x^7/7 - x^8/8 + 13*x^9/9 - 11*x^10/10 + 12*x^11/11 - 16*x^12/12 + 14*x^13/13 - 15*x^14/14 + 19*x^15/15 - x^16/16 +...+ a(n)*x^n/n +...
where
exp(L(x)) = 1 + x + x^3 + x^4 + x^9 + x^12 + x^16 + x^25 + x^27 + x^36 + x^48 + x^49 + x^64 + x^75 + x^81 + x^100 + x^108 +...+ x^(n^2) + x^(3*n^2) +...
Note that for n>1, a(n) = +1 at positions:
[5, 7, 17, 19, 29, 31, 41, 43, 53, 67, 79, 89, 101, 103, 113, 127, ...];
which appears to be A003630 (primes p such that 3 is not a square mod p).
		

Crossrefs

Programs

  • PARI
    {a(n) = local(L=x); L = log(1 + sum(k=1,sqrtint(n+1), x^(k^2) + x^(3*k^2)) +x*O(x^n)); n*polcoeff(L,n)}
    for(n=1,121, print1(a(n),", "))

Formula

a(n) = -1 iff n = 2^k for k>=1 [conjecture].
a(p) = +1 for primes p such that 3 is not a square mod p (A003630), and a(n) = +1 nowhere else except at n=0 [conjecture].

A296933 Primes p such that Legendre(3,p) = 0 or 1.

Original entry on oeis.org

3, 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, 179, 181, 191, 193, 227, 229, 239, 241, 251, 263, 277, 311, 313, 337, 347, 349, 359, 373, 383, 397, 409, 419, 421, 431, 433, 443, 457, 467, 479, 491, 503, 541, 563, 577
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Crossrefs

This is A038874 without the initial 2.

Programs

  • Maple
    # Load the Maple program HH given in A296920. Then run HH(3, 200); This produces A097933, A003630, this sequence, and A038875.
  • Mathematica
    Join[{3}, Select[Prime[Range[200]], JacobiSymbol[3, #] == 1 &]] (* Paolo Xausa, May 11 2024 *)
Showing 1-4 of 4 results.