cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003658 Fundamental discriminants of real quadratic fields; indices of primitive positive Dirichlet L-series.

Original entry on oeis.org

1, 5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 40, 41, 44, 53, 56, 57, 60, 61, 65, 69, 73, 76, 77, 85, 88, 89, 92, 93, 97, 101, 104, 105, 109, 113, 120, 124, 129, 133, 136, 137, 140, 141, 145, 149, 152, 156, 157, 161, 165, 168, 172, 173, 177, 181, 184, 185, 188, 193, 197
Offset: 1

Views

Author

Keywords

Comments

All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022

References

  • Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
  • M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
  • Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A039955 and 4*A230375.

Programs

  • Mathematica
    fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
    Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &]  (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
    max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
  • PARI
    v=[]; for(n=1,500,if(isfundamental(n),v=concat(v,n))); v
    
  • PARI
    list(lim)=my(v=List()); forsquarefree(n=1,lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v,n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
    
  • Sage
    def is_fundamental(d):
        r = d % 4
        if r > 1 : return False
        if r == 1: return (d != 1) and is_squarefree(d)
        q = d // 4
        return is_squarefree(q) and (q % 4 > 1)
    [1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018

Formula

Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022

Extensions

More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001

A104888 Class number of binary quadratic forms with radicand A005117(n).

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 2, 1, 2, 4, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 4, 4, 1, 2, 4, 1, 4, 2, 2, 2, 4, 1, 4, 2, 2, 2, 1, 2, 2, 4, 2, 2, 4, 2, 1, 2, 2, 4, 6, 4, 2, 2, 2, 4, 1, 4, 2, 2, 4, 1
Offset: 2

Views

Author

Steven Finch, May 03 2005

Keywords

Comments

The fundamental discriminant D and the radicand m (which is squarefree) are related via D=m if m=1 (mod 4) and D=4*m if m=2,3 (mod 4).

References

  • Hua Loo Keng, Introduction to Number Theory, Springer-Verlag, 1982, pp. 465-472.

Crossrefs

A106032 a(n) is the number of orbits under the action of GL_2[Z] on the primitive binary quadratic forms of discriminant D, where D>1 is the n-th fundamental discriminant.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 1, 4, 2, 2, 2, 3, 1, 4, 2, 3, 1, 2, 4, 1, 2, 4, 4, 2, 1, 2, 1, 2, 2, 2, 1
Offset: 1

Views

Author

Steven Finch, May 05 2005

Keywords

Comments

A003646 is the same except it is under the action of SL_2[Z].

Examples

			D = 5, 8, 12, 13, 17, 21, 24, 28, ..., that is, A003658.
		

Crossrefs

Showing 1-3 of 3 results.