A003657 Discriminants of imaginary quadratic fields, negated.
3, 4, 7, 8, 11, 15, 19, 20, 23, 24, 31, 35, 39, 40, 43, 47, 51, 52, 55, 56, 59, 67, 68, 71, 79, 83, 84, 87, 88, 91, 95, 103, 104, 107, 111, 115, 116, 119, 120, 123, 127, 131, 132, 136, 139, 143, 148, 151, 152, 155, 159, 163, 164, 167, 168, 179, 183, 184, 187, 191
Offset: 1
Keywords
References
- Duncan A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989.
- Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, p. 514.
- Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n=1..3000
- David Broadhurst and Daniele Dorigoni, Resurgent Lambert series with characters, arXiv:2507.21352 [math.NT], 2025. See pp. 30, 53.
- Steven R. Finch, Class number theory. [Cached copy, with permission of the author]
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
- Eric Weisstein's World of Mathematics, Class Number, Dirichlet L-Series, Fundamental Discriminant.
Programs
-
Mathematica
FundamentalDiscriminantQ[n_Integer] := n != 1 && (Mod[n, 4] == 1 || !Unequal[ Mod[n, 16], 8, 12]) && SquareFreeQ[n/2^IntegerExponent[n, 2]] (* via Eric E. Weisstein *); -Select[-Range@ 194, FundamentalDiscriminantQ] (* Robert G. Wilson v, Jun 01 2011 *)
-
PARI
ok(n)={isfundamental(-n)} \\ Andrew Howroyd, Jul 20 2018
-
PARI
ok(n)={n<>1 && issquarefree(n/2^valuation(n,2)) && (n%4==3 || n%16==8 || n%16==4)} \\ Andrew Howroyd, Jul 20 2018
-
Sage
[n for n in (1..200) if is_fundamental_discriminant(-n)==1] # G. C. Greubel, Mar 01 2019
Comments