cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003711 Expansion of e.g.f. cos(tanh(x)) (even powers only).

Original entry on oeis.org

1, -1, 9, -177, 6097, -325249, 24807321, -2558036145, 342232522657, -57569080467073, 11879658510739497, -2948163649552594737, 865683568087537789297, -296699416391356495667713, 117330699580950022391960505
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003710.

Programs

  • Mathematica
    nn = 20; Table[(CoefficientList[Series[Cos[Tanh[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
  • Maxima
    a(n):=sum((sum(binomial(2*m+k-1,2*m-1)*(2*m+k)!*(-1)^(k)*2^(2*n-2*m-k)*stirling2(2*n,2*m+k),k,0,2*n-2*m))/(2*m)!,m,1,n); /* Vladimir Kruchinin, Jun 10 2011 */

Formula

a(n) = Sum_{m=1..n} ( Sum_{k=0..2*n-2*m} binomial(2*m+k-1,2*m-1) * (2*m+k)! * (-1)^k * 2^(2*n-2*m-k) * Stirling2(2*n,2*m+k) )/(2*m)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 10 2011