cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A006229 Expansion of e.g.f. exp( tan x ).

Original entry on oeis.org

1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059419 and unsigned A111593.

Programs

  • Julia
    function A006229_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 2:n-1 T[n,k] = T[n-1,k-1] + k*(k-1)*T[n-1,k+1] end
            S[n] = sum(T[n,k] for k in 2:n)
        end
    S end
    println(A006229_list(24)) # Peter Luschny, Apr 27 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Tan[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 04 2011 *)
  • Maxima
    a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(tan(x)).
a(n) = sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: 1 + tan(x)/T(0), where T(k) = 4*k+1 - tan(x)/(2 + tan(x)/(4*k+3 - tan(x)/(2 + tan(x)/T(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) = Sum_{i=0..(n-1)/2} binomial(n-1,2*i)*z(i+1)*a(n-2*i-1), a(0)=1, where z(n) is tangent (or "zag") numbers (A000182). - Vladimir Kruchinin, Mar 04 2015 [corrected by Jason Yuen, Dec 29 2024]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001

A003710 Expansion of e.g.f. cos(tan(x)) (even powers only).

Original entry on oeis.org

1, -1, -7, -97, -2063, -53409, -752343, 166831871, 43685848289, 9398558916159, 2116926930779225, 524586454143030495, 144620290378876829905, 44287070229737735633567, 14954349885478653319004041
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 20; Table[(CoefficientList[Series[Cos[Tan[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else 2*sum((sum(binomial(j-1,2*m-1)*j!*2^(2*n-j-1)*(-1)^(n+j)*stirling2(2*n,j),j,2*m,2*n))/(2*m)!,m,0,n); /* Vladimir Kruchinin, Jun 28 2011 */
    
  • PARI
    my(x='x+O('x^30)); select(x->x, Vec(serlaplace(cos(tan(x))))) \\ Michel Marcus, Oct 02 2021

Formula

a(n) = 2 * Sum_{m=0..n} ( Sum_{j=2*m..2*n} binomial(j-1,2*m-1) * j! * 2^(2*n-j-1) * (-1)^(n+j) * Stirling2(2*n,j) )/(2*m)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 29 2011

A296856 Expansion of e.g.f. cosh(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 0, 3, 15, 224, 4545, 126753, 4626076, 213703095, 12167727543, 835893746300, 68091766034061, 6483302813035857, 712860388963255000, 89585739948801890619, 12753524767335858733935, 2040804997678590563632568, 364567987004433619078313961
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			cosh(x*tan(x/2)) = 1 + 3*x^4/4! + 15*x^6/6! + 224*x^8/8! + 4545*x^10/10! + 126753*x^12/12! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Cosh[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] cosh(x*tan(x/2)).

A013526 Numerator of [x^(2n)] of the Taylor expansion cosh(cosec(x)-cot(x))=1 +x^2/8 +3*x^4/128 +59*x^6/15360 +871*x^8/1474560 +....

Original entry on oeis.org

1, 1, 3, 59, 871, 325249, 35797, 24362249, 342232522657, 8224154352439, 23157229065769, 9926476934520521, 37638416003805990839, 296699416391356495667713, 691054566545631371393
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

The coefficients of the e.g.f. of x/2, cosh(cosec(x)-cot(x)) = 1 + 1*x^2/(2^2*2!) + 9*x^4/(2^4*4!) + 177*x^6/(2^6*6!) + 6097*x^8/(2^8*8!) + ..., are apparently the absolute values of A003711.

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[Cosh[Csc[x] - Cot[x]], {x, 0, 35}], x], {1, -2, 2}]] (* Vincenzo Librandi, Nov 12 2016 *)

Extensions

Name edited by R. J. Mathar, Dec 19 2011

A298245 Expansion of e.g.f. exp(cos(tanh(x))-1) (even powers only).

Original entry on oeis.org

1, -1, 12, -327, 15883, -1202524, 130394253, -19113418989, 3632485387276, -867280709024131, 253803272212372575, -89250842789856565620, 37105568909251258810585, -17991614679286735149423193, 10057557723279565571532112044, -6417980557539322347015938082111
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 15 2018

Keywords

Examples

			exp(cos(tanh(x))-1) = 1 - x^2/2! + 12*x^4/4! - 327*x^6/6! + 15883*x^8/8! - 1202524*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 15; Table[(CoefficientList[Series[Exp[Cos[Tanh[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cos(tanh(x))-1).
Showing 1-5 of 5 results.