A059419
Triangle T(n,k) (1 <= k <= n) of tangent numbers, read by rows: T(n,k) = coefficient of x^n/n! in expansion of (tan x)^k/k!.
Original entry on oeis.org
1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 16, 0, 20, 0, 1, 0, 136, 0, 40, 0, 1, 272, 0, 616, 0, 70, 0, 1, 0, 3968, 0, 2016, 0, 112, 0, 1, 7936, 0, 28160, 0, 5376, 0, 168, 0, 1, 0, 176896, 0, 135680, 0, 12432, 0, 240, 0, 1, 353792, 0, 1805056, 0, 508640, 0, 25872, 0, 330, 0, 1, 0
Offset: 1
1;
0, 1;
2, 0, 1;
0, 8, 0, 1;
16, 0, 20, 0, 1;
0, 136, 0, 40, 0, 1;
272, 0, 616, 0, 70, 0, 1;
0, 3968, 0, 2016, 0, 112, 0, 1;
7936, 0, 28160, 0, 5376, 0, 168, 0, 1;
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- Vladimir Kruchinin, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Toufik Mansour, Mark Shattuck, Combinatorial parameters on bargraphs of permutations, Transactions on Combinatorics, Article 1, Vol. 7, Issue 2, June 2018, Page 1-16.
A111593 (signed triangle with extra column k=0 and row n=0).
-
A059419 := proc(n,k) option remember; if n = k then 1; elif k <0 or k > n then 0; else procname(n-1,k-1)+k*(k+1)*procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
# The function BellMatrix is defined in A264428.
# Adds (1, 0, 0, 0, ..) as column 0.
BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
-
d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
rows = 12;
t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
T[n_, k_] := BellY[n, k, t];
Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
T(n,k)=if(k<1 || k>n,0,n!*polcoeff(tan(x+x*O(x^n))^k/k!,n))
-
def A059419_triangle(dim):
M = matrix(ZZ, dim, dim)
for n in (0..dim-1): M[n,n] = 1
for n in (1..dim-1):
for k in (0..n-1):
M[n,k] = M[n-1,k-1]+(k+1)*(k+2)*M[n-1,k+1]
return M
A059419_triangle(9) # Peter Luschny, Sep 19 2012
More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001
A111593
Triangle of tanh numbers.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, -2, 0, 1, 0, 0, -8, 0, 1, 0, 16, 0, -20, 0, 1, 0, 0, 136, 0, -40, 0, 1, 0, -272, 0, 616, 0, -70, 0, 1, 0, 0, -3968, 0, 2016, 0, -112, 0, 1, 0, 7936, 0, -28160, 0, 5376, 0, -168, 0, 1, 0, 0, 176896, 0, -135680, 0, 12432, 0, -240, 0, 1, 0, -353792, 0, 1805056, 0, -508640, 0, 25872
Offset: 0
Binomial convolution of row polynomials: p(3,x)= -2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1, together with those from A060081:
s(3,x)= -5*x+x^3; s(2,x)= -1+x^2, s(1,x)= x, s(0,x)= 1;
therefore -5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = -2*y+y^3 + 3*x*y^2 + 3*(-1+x^2)*y + (-5*x+x^3).
From _Paul Barry_, May 30 2010: (Start)
Triangle begins:
1;
0, 1;
0, 0, 1;
0, -2, 0, 1;
0, 0, -8, 0, 1;
0, 16, 0, -20, 0, 1;
0, 0, 136, 0, -40, 0, 1;
0, -272, 0, 616, 0, -70, 0, 1;
0, 0, -3968, 0, 2016, 0, -112, 0, 1;
Production matrix begins:
0, 1;
0, 0, 1;
0, -2, 0, 1;
0, 0, -6, 0, 1;
0, 0, 0, -12, 0, 1;
0, 0, 0, 0, -20, 0, 1;
0, 0, 0, 0, 0, -30, 0, 1;
0, 0, 0, 0, 0, 0, -42, 0, 1;
0, 0, 0, 0, 0, 0, 0, -56, 0, 1; (End)
-
# The function BellMatrix is defined in A264428.
BellMatrix(n -> 2^(n+1)*euler(n+1, 1), 9); # Peter Luschny, Jan 26 2016
-
t[0, 0] = 1; t[n_, m_] := Sum[ Binomial[k+m-1, m-1]*(k+m)!*(-1)^(k)*2^(n-k-m)*StirlingS2[n, k+m], {k, 0, n-m}]/m!; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
rows = 12;
M = BellMatrix[2^(#+1)*EulerE[#+1, 1]&, rows];
Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
T(n,m):=if n=0 and m=0 then 1 else sum(binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(n-k-m)*stirling2(n,k+m),k,0,n-m)/m!; /* Vladimir Kruchinin, Jun 09 2011 */
-
# uses[riordan_array from A256893]
riordan_array(1, tanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015
A047691
Numerators of coefficients in Taylor series for exp(tan(x)).
Original entry on oeis.org
1, 1, 1, 1, 3, 37, 59, 137, 871, 41641, 325249, 3887, 35797, 241586893, 24362249, 5721418891, 342232522657, 4315903789009, 8224154352439, 2832484672207, 23157229065769, 183184249105857781, 9926476934520521, 2154299222076719401
Offset: 0
1 + 1*x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (37/120)*x^5 + (59/240)*x^6 + (137/720)*x^7 + (871/5760)*x^8 + ...
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
-
Numerator[CoefficientList[Series[Exp[Tan[x]],{x,0,30}],x]] (* Harvey P. Dale, May 19 2015 *)
A331610
Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).
Original entry on oeis.org
1, 1, 3, 15, 97, 777, 7379, 80983, 1007137, 13986289, 214383171, 3593224767, 65347120705, 1281151315641, 26928292883795, 603928982033863, 14392387319349697, 363135896514611041, 9669298448057196291, 270932711729869233903, 7967970654277850949025
Offset: 0
-
S:= series(exp(1/(1-tan(x))-1), x, 31):
seq(coeff(S,x,i)*i!, i=0..30); # Robert Israel, Dec 10 2024
-
nmax = 20; CoefficientList[Series[Exp[1/(1 - Tan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] 2^(k - 1) A000111[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A047692
Denominators of coefficients in Taylor series for exp(tan(x)).
Original entry on oeis.org
1, 1, 2, 2, 8, 120, 240, 720, 5760, 362880, 3628800, 57600, 691200, 6227020800, 830269440, 261534873600, 20922789888000, 355687428096000, 914624815104000, 426824913715200, 4742499041280000, 51090942171709440000, 3784514234941440000
Offset: 0
1 + 1*x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (37/120)*x^5 + (59/240)*x^6 + (137/720)*x^7 + (871/5760)*x^8 + ...
- CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
A296835
Expansion of e.g.f. exp(x*tan(x/2)) (even powers only).
Original entry on oeis.org
1, 1, 4, 33, 451, 9110, 253401, 9246881, 427272364, 24332740569, 1671761966755, 136185663849422, 12966840876896193, 1425738305622057713, 179172604156015950676, 25507107918052543195905, 4081610970381242583997171, 729135575105289450378655526
Offset: 0
exp(x*tan(x/2)) = 1 + x^2/2! + 4*x^4/4! + 33*x^6/6! + 451*x^8/8! + ...
-
nmax = 17; Table[(CoefficientList[Series[Exp[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A168404
E.g.f.: Sum_{n>=0} tan(2^n*x)^n/n!.
Original entry on oeis.org
1, 2, 16, 528, 67584, 34210304, 69391122432, 565356426987520, 18478277930015260672, 2419401354886413876592640, 1267940756758206239694099841024, 2658665157828553829995392867121496064
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 528*x^3/3! + 67584*x^4/4! +...
A(x) = 1 + tan(2*x) + tan(4*x)^2/2! + tan(8*x)^3/3! + tan(16*x)^4/4! +...+ tan(2^n*x)^n/n! +...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(tan(x)):
G(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 37*x^5/5! + 177*x^6/6! +...+ A006229(n)*x^n/n! +...
-
{a(n)=n!*polcoeff(sum(k=0,n,tan(2^k*x +x*O(x^n))^k/k!),n)}
-
{a(n)=n!*polcoeff(exp(2^n*tan(x +x*O(x^n))),n)}
A296836
Expansion of e.g.f. exp(x*tanh(x/2)) (even powers only).
Original entry on oeis.org
1, 1, 2, 3, -3, 20, 105, -5271, 133826, -2714517, 25525845, 2131781300, -235250824479, 17527695547713, -1124258412169438, 58383380825728035, -975024061456732035, -398903577787777972396, 97649546210035758250281, -17069419358223320552890167
Offset: 0
exp(x*tanh(x/2)) = 1 + x^2/2! + 2*x^4/4! + 3*x^6/6! - 3*x^8/8! + ...
-
nmax = 19; Table[(CoefficientList[Series[Exp[x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A008308
Triangle of tangent numbers.
Original entry on oeis.org
1, 1, 2, 1, 8, 1, 16, 20, 1, 136, 40, 1, 272, 616, 70, 1, 3968, 2016, 112, 1, 7936, 28160, 5376, 168, 1, 176896, 135680, 12432, 240, 1, 353792, 1805056, 508640, 25872, 330, 1, 11184128, 11977856, 1595264, 49632, 440, 1, 22368256, 154918400, 59835776
Offset: 1
Triangle begins:
1;
1;
2, 1;
8, 1;
16, 20, 1;
136, 40, 1;
...
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
Essentially the same triangle as
A059419, which is the main entry for this triangle.
-
T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k*(k + 1)*T[n - 1, k + 1]; T[, ] = 0;
row[n_] := DeleteCases[Table[T[n, k], {k, 1, n}] , 0];
Array[row, 13] // Flatten (* Jean-François Alcover, Nov 09 2017 *)
More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001
A013516
Denominators in the Taylor expansion exp(cosec(x)-cot(x))=1 + x/2 + x^2/8 + x^3/16 + 3*x^4/128 + 37*x^5/3840 + 59*x^6/15360 + ...
Original entry on oeis.org
1, 2, 8, 16, 128, 3840, 15360, 92160, 1474560, 185794560, 3715891200, 117964800, 2831155200, 51011754393600, 13603134504960, 8569974738124800, 1371195958099968000, 46620662575398912000, 239763407530622976000
Offset: 0
Patrick Demichel (patrick.demichel(AT)hp.com)
exp(cosec(x)-cot(x)) = 1 +1*x/(2^1*1!) + 1*x^2/(2^2*2!) + 3*x^3/(2^3*3!) + 9*x^4/(2^4*4!) + 37*x^5/(2^5*5!) + 177*x^6/(2^6*6!) +959*x^7/(2^7*7!)+ ...
-
A013516 := proc(n)
exp(csc(x)-cot(x)) ;
coeftayl( %,x=0,n) ;
denom(%) ;
end proc: # R. J. Mathar, Dec 18 2011
Showing 1-10 of 12 results.
Next
Comments