cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A059419 Triangle T(n,k) (1 <= k <= n) of tangent numbers, read by rows: T(n,k) = coefficient of x^n/n! in expansion of (tan x)^k/k!.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 16, 0, 20, 0, 1, 0, 136, 0, 40, 0, 1, 272, 0, 616, 0, 70, 0, 1, 0, 3968, 0, 2016, 0, 112, 0, 1, 7936, 0, 28160, 0, 5376, 0, 168, 0, 1, 0, 176896, 0, 135680, 0, 12432, 0, 240, 0, 1, 353792, 0, 1805056, 0, 508640, 0, 25872, 0, 330, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Comments

(tan(x))^k = sum{n>0, If n+k is odd, T(n,k) = 0 = n!/k!*(-1)^((n+k)/2)*sum{j=k..n} (j!/n!) * Stirling2(n,j) * 2^(n-j) * (-1)^(n+j-k) * binomial(j-1,k-1)*x^n}. - Vladimir Kruchinin, Aug 13 2012
Also the Bell transform of A009006(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			     1;
     0,     1;
     2,     0,     1;
     0,     8,     0,    1;
    16,     0,    20,    0,    1;
     0,   136,     0,   40,    0,   1;
   272,     0,   616,    0,   70,   0,   1;
     0,  3968,     0, 2016,    0, 112,   0,  1;
  7936,     0, 28160,    0, 5376,   0, 168,  0,  1;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.

Crossrefs

Diagonals give A000182, A024283, A059420 (interspersed with 0's), also A007290, A059421. Row sums give A006229. Essentially the same triangle as A008308.
A111593 (signed triangle with extra column k=0 and row n=0).

Programs

  • Maple
    A059419 := proc(n,k) option remember; if n = k then 1; elif k <0 or k > n then 0; else  procname(n-1,k-1)+k*(k+1)*procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
  • Mathematica
    d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
    rows = 12;
    t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,n!*polcoeff(tan(x+x*O(x^n))^k/k!,n))
    
  • Sage
    def A059419_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*(k+2)*M[n-1,k+1]
        return M
    A059419_triangle(9) # Peter Luschny, Sep 19 2012

Formula

T(n+1, k) = T(n, k-1) + k*(k+1)*T(n, k+1), T(n, n) = 1.
If n+k is odd, T(n,k) = 0 = 1/k!*(-1)^((n+k)/2)*Sum_{j=k..n} j!* Stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1). - Vladimir Kruchinin, Feb 10 2011
E.g.f.: exp(t*tan(x))-1 = t*x + t^2*x^2/2! + (2*t + t^3)*x^3/3! + ....
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x^2)*d/dx. - Peter Bala, Nov 25 2011
The o.g.f.s of the diagonals of this triangle are rational functions obtained from the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + .... For example, the fourth subdiagonal has o.g.f. 8*t*(2+3*t)/(1-t)^7 = 16*t + 136*t^2 + 616*t^3 + .... - Peter Bala, Apr 23 2012
With offset 0 and initial column of zeros, except for T(0,0) = 1, e.g.f.(t,x) = e^(x*tan(t)) = e^(P(.,x)t) ; the lowering operator, L = atan(d/dx) ; and the raising operator, R = x [1 +(d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x). The sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001

A111593 Triangle of tanh numbers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, -2, 0, 1, 0, 0, -8, 0, 1, 0, 16, 0, -20, 0, 1, 0, 0, 136, 0, -40, 0, 1, 0, -272, 0, 616, 0, -70, 0, 1, 0, 0, -3968, 0, 2016, 0, -112, 0, 1, 0, 7936, 0, -28160, 0, 5376, 0, -168, 0, 1, 0, 0, 176896, 0, -135680, 0, 12432, 0, -240, 0, 1, 0, -353792, 0, 1805056, 0, -508640, 0, 25872
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Sheffer triangle associated to Sheffer triangle A060081.
For Sheffer triangles (matrices) see the explanation and S. Roman reference given under A048854.
In the umbral calculus (see the S. Roman reference) this triangle would be called associated for (1,arctanh(y)).
Without the n=0 row and m=0 column and unsigned, this is the Jabotinsky triangle A059419.
The inverse matrix of A with elements a(n,m), n,m>=0, is A111594.
The row polynomials p(n,x):=sum(a(n,m)*x^m,m=0..n), together with the row polynomials s(n,x) of A060081, satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.
The row polynomials p(n,x) (defined above) have e.g.f. exp(x*tanh(y)).
Exponential Riordan array [1, tanh(x)], inverse of [1, arctanh(x)] which is A111594. - Paul Barry, May 30 2010
Also the Bell transform of A155585(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			Binomial convolution of row polynomials: p(3,x)= -2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1, together with those from A060081:
s(3,x)= -5*x+x^3; s(2,x)= -1+x^2, s(1,x)= x, s(0,x)= 1;
therefore -5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = -2*y+y^3 + 3*x*y^2 + 3*(-1+x^2)*y + (-5*x+x^3).
From _Paul Barry_, May 30 2010: (Start)
Triangle begins:
  1;
  0,     1;
  0,     0,     1;
  0,    -2,     0,     1;
  0,     0,    -8,     0,     1;
  0,    16,     0,   -20,     0,     1;
  0,     0,   136,     0,   -40,     0,     1;
  0,  -272,     0,   616,     0,   -70,     0,     1;
  0,     0, -3968,     0,  2016,     0,  -112,     0,     1;
Production matrix begins:
  0,   1;
  0,   0,   1;
  0,  -2,   0,   1;
  0,   0,  -6,   0,   1;
  0,   0,   0, -12,   0,   1;
  0,   0,   0,   0, -20,   0,   1;
  0,   0,   0,   0,   0, -30,   0,   1;
  0,   0,   0,   0,   0,   0, -42,   0,   1;
  0,   0,   0,   0,   0,   0,   0, -56,   0,   1; (End)
		

Crossrefs

Row sums: A003723. Unsigned row sums: A006229.
Cf. A002378.

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> 2^(n+1)*euler(n+1, 1), 9); # Peter Luschny, Jan 26 2016
  • Mathematica
    t[0, 0] = 1; t[n_, m_] := Sum[ Binomial[k+m-1, m-1]*(k+m)!*(-1)^(k)*2^(n-k-m)*StirlingS2[n, k+m], {k, 0, n-m}]/m!; Table[t[n, m], {n, 0, 11}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013, after Vladimir Kruchinin *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[2^(#+1)*EulerE[#+1, 1]&, rows];
    Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
  • Maxima
    T(n,m):=if n=0 and m=0 then 1 else sum(binomial(k+m-1,m-1)*(k+m)!*(-1)^(k)*2^(n-k-m)*stirling2(n,k+m),k,0,n-m)/m!; /* Vladimir Kruchinin, Jun 09 2011 */
    
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, tanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015

Formula

E.g.f. for column m>=0: ((tanh(x))^m)/m!.
a(n, m) = coefficient of x^n of ((tanh(x))^m)/m!, n>=m>=0, else 0.
a(n, m) = a(n-1, m-1) - (m+1)*m*a(n-1, m+1), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n
T(n,m) = (Sum_{k=0..n-m} binomial(k+m-1,m-1)*(k+m)!*(-1)^k*2^(n-k-m)*stirling2(n,k+m))/m!, T(0,0)=1. - Vladimir Kruchinin, Jun 09 2011
With e.g.f. exp(x*tanh(t)) = sum(n>= 0, P(n,x)*t^n/n!), the lowering operator is L = arctanh(d/dx) = d/dx + (1/3)(d/dx)^3 + (1/5)(d/dx)^5 + ..., and the raising operator is R = x [1 - (d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x), since the sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015
The raising operator R = x - x D^2 in matrix form acting on an o.g.f. (formal power series) is the transpose of the production matrix M below. The linear term x is the diagonal of ones after transposition. The other transposed diagonal (A002378) comes from -x D^2 x^n = -n * (n-1) x^(n-1). Then P(n,x) = (1,x,x^2,..) M^n (1,0,0,..)^T. - Tom Copeland, Aug 17 2016

A047691 Numerators of coefficients in Taylor series for exp(tan(x)).

Original entry on oeis.org

1, 1, 1, 1, 3, 37, 59, 137, 871, 41641, 325249, 3887, 35797, 241586893, 24362249, 5721418891, 342232522657, 4315903789009, 8224154352439, 2832484672207, 23157229065769, 183184249105857781, 9926476934520521, 2154299222076719401
Offset: 0

Keywords

Examples

			1 + 1*x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (37/120)*x^5 + (59/240)*x^6 + (137/720)*x^7 + (871/5760)*x^8 + ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

Crossrefs

Programs

  • Mathematica
    Numerator[CoefficientList[Series[Exp[Tan[x]],{x,0,30}],x]] (* Harvey P. Dale, May 19 2015 *)

A331610 Expansion of e.g.f.: exp(1 / (1 - tan(x)) - 1).

Original entry on oeis.org

1, 1, 3, 15, 97, 777, 7379, 80983, 1007137, 13986289, 214383171, 3593224767, 65347120705, 1281151315641, 26928292883795, 603928982033863, 14392387319349697, 363135896514611041, 9669298448057196291, 270932711729869233903, 7967970654277850949025
Offset: 0

Author

Ilya Gutkovskiy, Jan 22 2020

Keywords

Programs

  • Maple
    S:= series(exp(1/(1-tan(x))-1), x, 31):
    seq(coeff(S,x,i)*i!, i=0..30); # Robert Israel, Dec 10 2024
  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[1/(1 - Tan[x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    A000111[n_] := If[EvenQ[n], Abs[EulerE[n]], Abs[(2^(n + 1) (2^(n + 1) - 1) BernoulliB[n + 1])/(n + 1)]]; a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, k - 1] 2^(k - 1) A000111[k] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]

Formula

E.g.f.: exp(sin(x) / (cos(x) - sin(x))).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * 2^(k-1) * A000111(k) * a(n-k).
a(n) ~ 2^(2*n - 1/4) * exp(1/Pi - 1/2 + 2^(3/2)*sqrt(n/Pi) - n) * n^(n - 1/4) / Pi^(n + 1/4). - Vaclav Kotesovec, Jan 27 2020

A047692 Denominators of coefficients in Taylor series for exp(tan(x)).

Original entry on oeis.org

1, 1, 2, 2, 8, 120, 240, 720, 5760, 362880, 3628800, 57600, 691200, 6227020800, 830269440, 261534873600, 20922789888000, 355687428096000, 914624815104000, 426824913715200, 4742499041280000, 51090942171709440000, 3784514234941440000
Offset: 0

Keywords

Examples

			1 + 1*x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (37/120)*x^5 + (59/240)*x^6 + (137/720)*x^7 + (871/5760)*x^8 + ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

Crossrefs

A296835 Expansion of e.g.f. exp(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 1, 4, 33, 451, 9110, 253401, 9246881, 427272364, 24332740569, 1671761966755, 136185663849422, 12966840876896193, 1425738305622057713, 179172604156015950676, 25507107918052543195905, 4081610970381242583997171, 729135575105289450378655526
Offset: 0

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			exp(x*tan(x/2)) = 1 + x^2/2! + 4*x^4/4! + 33*x^6/6! + 451*x^8/8! + ...
		

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Exp[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*tan(x/2)).

A168404 E.g.f.: Sum_{n>=0} tan(2^n*x)^n/n!.

Original entry on oeis.org

1, 2, 16, 528, 67584, 34210304, 69391122432, 565356426987520, 18478277930015260672, 2419401354886413876592640, 1267940756758206239694099841024, 2658665157828553829995392867121496064
Offset: 0

Author

Paul D. Hanna, Nov 25 2009

Keywords

Examples

			E.g.f.: A(x) = 1 + 2*x + 16*x^2/2! + 528*x^3/3! + 67584*x^4/4! +...
A(x) = 1 + tan(2*x) + tan(4*x)^2/2! + tan(8*x)^3/3! + tan(16*x)^4/4! +...+ tan(2^n*x)^n/n! +...
a(n) = coefficient of x^n/n! in G(x)^(2^n) where G(x) = exp(tan(x)):
G(x) = 1 + x + x^2/2! + 3*x^3/3! + 9*x^4/4! + 37*x^5/5! + 177*x^6/6! +...+ A006229(n)*x^n/n! +...
		

Crossrefs

Cf. A006229 (exp(tan x)), variants: A136632, A168402, A168403, A168405, A168406, A168407, A168408.

Programs

  • PARI
    {a(n)=n!*polcoeff(sum(k=0,n,tan(2^k*x +x*O(x^n))^k/k!),n)}
    
  • PARI
    {a(n)=n!*polcoeff(exp(2^n*tan(x +x*O(x^n))),n)}

Formula

a(n) = [x^n/n! ] exp(2^n*tan(x)) for n>=0.

A296836 Expansion of e.g.f. exp(x*tanh(x/2)) (even powers only).

Original entry on oeis.org

1, 1, 2, 3, -3, 20, 105, -5271, 133826, -2714517, 25525845, 2131781300, -235250824479, 17527695547713, -1124258412169438, 58383380825728035, -975024061456732035, -398903577787777972396, 97649546210035758250281, -17069419358223320552890167
Offset: 0

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			exp(x*tanh(x/2)) = 1 + x^2/2! + 2*x^4/4! + 3*x^6/6! - 3*x^8/8! + ...
		

Programs

  • Mathematica
    nmax = 19; Table[(CoefficientList[Series[Exp[x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*tanh(x/2)).

A008308 Triangle of tangent numbers.

Original entry on oeis.org

1, 1, 2, 1, 8, 1, 16, 20, 1, 136, 40, 1, 272, 616, 70, 1, 3968, 2016, 112, 1, 7936, 28160, 5376, 168, 1, 176896, 135680, 12432, 240, 1, 353792, 1805056, 508640, 25872, 330, 1, 11184128, 11977856, 1595264, 49632, 440, 1, 22368256, 154918400, 59835776
Offset: 1

Keywords

Examples

			Triangle begins:
    1;
    1;
    2,  1;
    8,  1;
   16, 20, 1;
  136, 40, 1;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.

Crossrefs

Essentially the same triangle as A059419, which is the main entry for this triangle.
Row sums give A006229.

Programs

  • Mathematica
    T[n_, n_] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k*(k + 1)*T[n - 1, k + 1]; T[, ] = 0;
    row[n_] := DeleteCases[Table[T[n, k], {k, 1, n}] , 0];
    Array[row, 13] // Flatten (* Jean-François Alcover, Nov 09 2017 *)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001

A013516 Denominators in the Taylor expansion exp(cosec(x)-cot(x))=1 + x/2 + x^2/8 + x^3/16 + 3*x^4/128 + 37*x^5/3840 + 59*x^6/15360 + ...

Original entry on oeis.org

1, 2, 8, 16, 128, 3840, 15360, 92160, 1474560, 185794560, 3715891200, 117964800, 2831155200, 51011754393600, 13603134504960, 8569974738124800, 1371195958099968000, 46620662575398912000, 239763407530622976000
Offset: 0

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

The numerators are apparently the same as A047691.

Examples

			exp(cosec(x)-cot(x)) = 1 +1*x/(2^1*1!) + 1*x^2/(2^2*2!) + 3*x^3/(2^3*3!) + 9*x^4/(2^4*4!) + 37*x^5/(2^5*5!) +  177*x^6/(2^6*6!) +959*x^7/(2^7*7!)+ ...
		

Crossrefs

Cf. A006229, A002425 (expansion of cosec(x)-cot(x)).

Programs

  • Maple
    A013516 := proc(n)
            exp(csc(x)-cot(x)) ;
            coeftayl( %,x=0,n) ;
            denom(%) ;
    end proc:  # R. J. Mathar, Dec 18 2011

Formula

a(n) = A047692(n) * 2^n. - Sean A. Irvine, Aug 07 2018

Extensions

Corrected by R. J. Mathar, Dec 18 2011
Showing 1-10 of 12 results. Next