cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A155585 a(n) = 2^n*E(n, 1) where E(n, x) are the Euler polynomials.

Original entry on oeis.org

1, 1, 0, -2, 0, 16, 0, -272, 0, 7936, 0, -353792, 0, 22368256, 0, -1903757312, 0, 209865342976, 0, -29088885112832, 0, 4951498053124096, 0, -1015423886506852352, 0, 246921480190207983616, 0, -70251601603943959887872, 0, 23119184187809597841473536, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2009

Keywords

Comments

Previous name was: a(n) = Sum_{k=0..n-1} (-1)^(k)*C(n-1,k)*a(n-1-k)*a(k) for n>0 with a(0)=1.
Factorials have a similar recurrence: f(n) = Sum_{k=0..n-1} C(n-1,k)*f(n-1-k)*f(k), n > 0.
Related to A102573: letting T(q,r) be the coefficient of n^(r+1) in the polynomial 2^(q-n)/n times Sum_{k=0..n} binomial(n,k)*k^q, then A155585(x) = Sum_{k=0..x-1} T(x,k)*(-1)^k. See Mathematica code below. - John M. Campbell, Nov 16 2011
For the difference table and the relation to the Seidel triangle see A239005. - Paul Curtz, Mar 06 2014
From Tom Copeland, Sep 29 2015: (Start)
Let z(t) = 2/(e^(2t)+1) = 1 + tanh(-t) = e.g.f.(-t) for this sequence = 1 - t + 2*t^3/3! - 16*t^5/5! + ... .
dlog(z(t))/dt = -z(-t), so the raising operators that generate Appell polynomials associated with this sequence, A081733, and its reciprocal, A119468, contain z(-d/dx) = e.g.f.(d/dx) as the differential operator component.
dz(t)/dt = z*(z-2), so the assorted relations to a Ricatti equation, the Eulerian numbers A008292, and the Bernoulli numbers in the Rzadkowski link hold.
From Michael Somos's formula below (drawing on the Edwards link), y(t,1)=1 and x(t,1) = (1-e^(2t))/(1+e^(2t)), giving z(t) = 1 + x(t,1). Compare this to the formulas in my list in A008292 (Sep 14 2014) with a=1 and b=-1,
A) A(t,1,-1) = A(t) = -x(t,1) = (e^(2t)-1)/(1+e^(2t)) = tanh(t) = t + -2*t^3/3! + 16*t^5/5! + -272*t^7/7! + ... = e.g.f.(t) - 1 (see A000182 and A000111)
B) Ainv(t) = log((1+t)/(1-t))/2 = tanh^(-1)(t) = t + t^3/3 + t^5/5 + ..., the compositional inverse of A(t)
C) dA/dt = (1-A^2), relating A(t) to a Weierstrass elliptic function
D) ((1-t^2)d/dt)^n t evaluated at t=0, a generator for the sequence A(t)
F) FGL(x,y)= (x+y)/(1+xy) = A(Ainv(x) + Ainv(y)), a related formal group law corresponding to the Lorentz FGL (Lorentz transformation--addition of parallel velocities in special relativity) and the Atiyah-Singer signature and the elliptic curve (1-t^2)*s = t^3 in Tate coordinates according to the Lenart and Zainoulline link and the Buchstaber and Bunkova link (pp. 35-37) in A008292.
A133437 maps the reciprocal odd natural numbers through the refined faces of associahedra to a(n).
A145271 links the differential relations to the geometry of flow maps, vector fields, and thereby formal group laws. See Mathworld for links of tanh to other geometries and statistics.
Since the a(n) are related to normalized values of the Bernoulli numbers and the Riemann zeta and Dirichlet eta functions, there are links to Witten's work on volumes of manifolds in two-dimensional quantum gauge theories and the Kervaire-Milnor formula for homotopy groups of hyperspheres (see my link below).
See A101343, A111593 and A059419 for this and the related generator (1 + t^2) d/dt and associated polynomials. (End)
With the exception of the first term (1), entries are the alternating sums of the rows of the Eulerian triangle, A008292. - Gregory Gerard Wojnar, Sep 29 2018

Examples

			E.g.f.: 1 + x - 2*x^3/3! + 16*x^5/5! - 272*x^7/7! + 7936*x^9/9! -+ ... = exp(x)/cosh(x).
O.g.f.: 1 + x - 2*x^3 + 16*x^5 - 272*x^7 + 7936*x^9 - 353792*x^11 +- ...
O.g.f.: 1 + x/(1+2*x) + 2!*x^2/((1+2*x)*(1+4*x)) + 3!*x^3/((1+2*x)*(1+4*x)*(1+6*x)) + ...
		

Crossrefs

Equals row sums of A119879. - Johannes W. Meijer, Apr 20 2011
(-1)^n*a(n) are the alternating row sums of A123125. - Wolfdieter Lang, Jul 12 2017

Programs

  • Maple
    A155585 := n -> 2^n*euler(n, 1): # Peter Luschny, Jan 26 2009
    a := proc(n) option remember; `if`(n::even, 0^n, -(-1)^n - add((-1)^k*binomial(n,k) *a(n-k), k = 1..n-1)) end: # Peter Luschny, Jun 01 2016
    # Or via the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> (-2)^n*subs(x = -1/2, F(n)):
    seq(a(n), n = 0..30); # Peter Luschny, May 21 2021
  • Mathematica
    a[m_] := Sum[(-2)^(m - k) k! StirlingS2[m, k], {k, 0, m}] (* Peter Luschny, Apr 29 2009 *)
    poly[q_] :=  2^(q-n)/n*FunctionExpand[Sum[Binomial[n, k]*k^q, {k, 0, n}]]; T[q_, r_] :=  First[Take[CoefficientList[poly[q], n], {r+1, r+1}]]; Table[Sum[T[x, k]*(-1)^k, {k, 0, x-1}], {x, 1, 16}] (* John M. Campbell, Nov 16 2011 *)
    f[n_] := (-1)^n 2^(n+1) PolyLog[-n, -1]; f[0] = -f[0]; Array[f, 27, 0] (* Robert G. Wilson v, Jun 28 2012 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1,(-1)^(k)*binomial(n-1,k)*a(n-1-k)*a(k)))
    
  • PARI
    a(n)=local(X=x+x*O(x^n));n!*polcoeff(exp(X)/cosh(X),n)
    
  • PARI
    a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1+2*k*x+x*O(x^n))),n) \\ Paul D. Hanna, Jul 20 2011
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); n! * polcoeff( 1 + sinh(x + A) / cosh(x + A), n))} /* Michael Somos, Jan 16 2012 */
    
  • PARI
    a(n)=local(A=1+x);for(i=1,n,A=sum(k=0,n,intformal(subst(A,x,-x)+x*O(x^n))^k/k!));n!*polcoeff(A,n)
    for(n=0,30,print1(a(n),", ")) \\ Paul D. Hanna, Nov 25 2013
    
  • Python
    from sympy import bernoulli
    def A155585(n): return (((2<<(m:=n+1))-2)*bernoulli(m)<>1) if n&1 else (0 if n else 1) # Chai Wah Wu, Apr 14 2023
  • Sage
    def A155585(n) :
        if n == 0 : return 1
        return add(add((-1)^(j+1)*binomial(n+1,k-j)*j^n for j in (0..k)) for k in (1..n))
    [A155585(n) for n in (0..26)] # Peter Luschny, Jul 23 2012
    
  • Sage
    def A155585_list(n): # Akiyama-Tanigawa algorithm
        A = [0]*(n+1); R = []
        for m in range(n+1) :
            d = divmod(m+3, 4)
            A[m] = 0 if d[1] == 0 else (-1)^d[0]/2^(m//2)
            for j in range(m, 0, -1) :
                A[j - 1] = j * (A[j - 1] - A[j])
            R.append(A[0])
        return R
    A155585_list(30) # Peter Luschny, Mar 09 2014
    

Formula

E.g.f.: exp(x)*sech(x) = exp(x)/cosh(x). (See A009006.) - Paul Barry, Mar 15 2006
Sequence of absolute values is A009006 (e.g.f. 1+tan(x)).
O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 + 2*k*x). - Paul D. Hanna, Jul 20 2011
a(n) = 2^n*E_{n}(1) where E_{n}(x) are the Euler polynomials. - Peter Luschny, Jan 26 2009
a(n) = EL_{n}(-1) where EL_{n}(x) are the Eulerian polynomials. - Peter Luschny, Aug 03 2010
a(n+1) = (4^n-2^n)*B_n(1)/n, where B_{n}(x) are the Bernoulli polynomials (B_n(1) = B_n for n <> 1). - Peter Luschny, Apr 22 2009
G.f.: 1/(1-x+x^2/(1-x+4*x^2/(1-x+9*x^2/(1-x+16*x^2/(1-...))))) (continued fraction). - Paul Barry, Mar 30 2010
G.f.: -log(x/(exp(x)-1))/x = Sum_{n>=0} a(n)*x^n/(2^(n+1)*(2^(n+1)-1)*n!). - Vladimir Kruchinin, Nov 05 2011
E.g.f.: exp(x)/cosh(x) = 2/(1+exp(-2*x)) = 2/(G(0) + 1); G(k) = 1 - 2*x/(2*k + 1 - x*(2*k+1)/(x - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2011
E.g.f. is x(t,1) + y(t,1) where x(t,a) and y(t,a) satisfy y(t,a)^2 = (a^2 - x(t,a)^2) / (1 - a^2 * x(t,a)^2) and dx(t,a) / dt = y(t,a) * (1 - a * x(t,a)^2) and are the elliptic functions of Edwards. - Michael Somos, Jan 16 2012
E.g.f.: 1/(1 - x/(1+x/(1 - x/(3+x/(1 - x/(5+x/(1 - x/(7+x/(1 - x/(9+x/(1 +...))))))))))), a continued fraction. - Paul D. Hanna, Feb 11 2012
E.g.f. satisfies: A(x) = Sum_{n>=0} Integral( A(-x) dx )^n / n!. - Paul D. Hanna, Nov 25 2013
a(n) = -2^(n+1)*Li_{-n}(-1). - Peter Luschny, Jun 28 2012
a(n) = Sum_{k=1..n} Sum_{j=0..k} (-1)^(j+1)*binomial(n+1,k-j)*j^n for n > 0. - Peter Luschny, Jul 23 2012
From Sergei N. Gladkovskii, Oct 25 2012 to Dec 16 2013: (Start)
Continued fractions:
G.f.: 1 + x/T(0) where T(k) = 1 + (k+1)*(k+2)*x^2/T(k+1).
E.g.f.: exp(x)/cosh(x) = 1 + x/S(0) where S(k) = (2*k+1) + x^2/S(k+1).
E.g.f.: 1 + x/(U(0)+x) where U(k) = 4*k+1 - x/(1 + x/(4*k+3 - x/(1 + x/U(k+1)))).
E.g.f.: 1 + tanh(x) = 4*x/(G(0)+2*x) where G(k) = 1 - (k+1)/(1 - 2*x/(2*x + (k+1)^2/G(k+1)));
G.f.: 1 + x/G(0) where G(k) = 1 + 2*x^2*(2*k+1)^2 - x^4*(2*k+1)*(2*k+2)^2*(2*k+3)/G(k+1) (due to Stieltjes).
E.g.f.: 1 + x/(G(0) + x) where G(k) = 1 - 2*x/(1 + (k+1)/G(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*(k+1)/( 1 - x*(k+1)/Q(k+1)).
G.f.: 2 - 1/Q(0) where Q(k) = 1 + x*k^2 + x/(1 - x*(k+1)^2/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - 2*x + x*(k+1)/(1-x*(k+1)/Q(k+1)).
G.f.: 1/Q(0) where Q(k) = 1 - x*(k+1)/(1 + x*(k+1)/Q(k+1)).
E.g.f.: 1 + x*Q(0) where Q(k) = 1 - x^2/( x^2 + (2*k+1)*(2*k+3)/Q(k+1)).
G.f.: 2 - T(0)/(1+x) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + (1+x)^2/T(k+1)).
E.g.f.: 1/(x - Q(0)) where Q(k) = 4*k^2 - 1 + 2*x + x^2*(2*k-1)*(2*k+3)/Q(k+1). (End)
G.f.: 1 / (1 - b(1)*x / (1 - b(2)*x / (1 - b(3)*x / ... ))) where b = A001057. - Michael Somos, Jan 03 2013
From Paul Curtz, Mar 06 2014: (Start)
a(2n) = A000007(n).
a(2n+1) = (-1)^n*A000182(n+1).
a(n) is the binomial transform of A122045(n).
a(n) is the row sum of A081658. For fractional Euler numbers see A238800.
a(n) + A122045(n) = 2, 1, -1, -2, 5, 16, ... = -A163982(n).
a(n) - A122045(n) = -A163747(n).
a(n) is the Akiyama-Tanigawa transform applied to 1, 0, -1/2, -1/2, -1/4, 0, ... = A046978(n+3)/A016116(n). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/2) - zeta(-n, 1)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) = 2^(n + 1)*(2^(n + 1) - 1)*Bernoulli(n + 1, 1)/(n + 1). (From Bill Gosper, Oct 28 2015) - N. J. A. Sloane, Oct 28 2015 [See the above comment from Peter Luschny, Apr 22 2009.]
a(n) = -(n mod 2)*((-1)^n + Sum_{k=1..n-1} (-1)^k*C(n,k)*a(n-k)) for n >= 1. - Peter Luschny, Jun 01 2016
a(n) = (-2)^n*F_{n}(-1/2), where F_{n}(x) is the Fubini polynomial. - Peter Luschny, May 21 2021

Extensions

New name from Peter Luschny, Mar 12 2015

A059419 Triangle T(n,k) (1 <= k <= n) of tangent numbers, read by rows: T(n,k) = coefficient of x^n/n! in expansion of (tan x)^k/k!.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 16, 0, 20, 0, 1, 0, 136, 0, 40, 0, 1, 272, 0, 616, 0, 70, 0, 1, 0, 3968, 0, 2016, 0, 112, 0, 1, 7936, 0, 28160, 0, 5376, 0, 168, 0, 1, 0, 176896, 0, 135680, 0, 12432, 0, 240, 0, 1, 353792, 0, 1805056, 0, 508640, 0, 25872, 0, 330, 0, 1, 0
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2001

Keywords

Comments

(tan(x))^k = sum{n>0, If n+k is odd, T(n,k) = 0 = n!/k!*(-1)^((n+k)/2)*sum{j=k..n} (j!/n!) * Stirling2(n,j) * 2^(n-j) * (-1)^(n+j-k) * binomial(j-1,k-1)*x^n}. - Vladimir Kruchinin, Aug 13 2012
Also the Bell transform of A009006(n+1). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 26 2016

Examples

			     1;
     0,     1;
     2,     0,     1;
     0,     8,     0,    1;
    16,     0,    20,    0,    1;
     0,   136,     0,   40,    0,   1;
   272,     0,   616,    0,   70,   0,   1;
     0,  3968,     0, 2016,    0, 112,   0,  1;
  7936,     0, 28160,    0, 5376,   0, 168,  0,  1;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.

Crossrefs

Diagonals give A000182, A024283, A059420 (interspersed with 0's), also A007290, A059421. Row sums give A006229. Essentially the same triangle as A008308.
A111593 (signed triangle with extra column k=0 and row n=0).

Programs

  • Maple
    A059419 := proc(n,k) option remember; if n = k then 1; elif k <0 or k > n then 0; else  procname(n-1,k-1)+k*(k+1)*procname(n-1,k+1) ; end if; end proc: # R. J. Mathar, Feb 11 2011
    # The function BellMatrix is defined in A264428.
    # Adds (1, 0, 0, 0, ..) as column 0.
    BellMatrix(n -> 2^(n+1)*abs(euler(n+1, 1)), 10); # Peter Luschny, Jan 26 2016
  • Mathematica
    d[f_ ] := (1+x^2)*D[f, x]; d[ f_, n_] := Nest[d, f, n]; row[n_] := Rest[ CoefficientList[ d[Exp[x*t], n] /. x -> 0, t]]; Flatten[ Table[ row[n], {n, 1, 12}]] (* Jean-François Alcover, Dec 21 2011, after Peter Bala *)
    rows = 12;
    t = Table[2^(n+1)*Abs[EulerE[n+1, 1]], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • PARI
    T(n,k)=if(k<1 || k>n,0,n!*polcoeff(tan(x+x*O(x^n))^k/k!,n))
    
  • Sage
    def A059419_triangle(dim):
        M = matrix(ZZ, dim, dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)*(k+2)*M[n-1,k+1]
        return M
    A059419_triangle(9) # Peter Luschny, Sep 19 2012

Formula

T(n+1, k) = T(n, k-1) + k*(k+1)*T(n, k+1), T(n, n) = 1.
If n+k is odd, T(n,k) = 0 = 1/k!*(-1)^((n+k)/2)*Sum_{j=k..n} j!* Stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1). - Vladimir Kruchinin, Feb 10 2011
E.g.f.: exp(t*tan(x))-1 = t*x + t^2*x^2/2! + (2*t + t^3)*x^3/3! + ....
The row polynomials are given by D^n(exp(x*t)) evaluated at x = 0, where D is the operator (1+x^2)*d/dx. - Peter Bala, Nov 25 2011
The o.g.f.s of the diagonals of this triangle are rational functions obtained from the series reversion (x-t*tan(x))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3! + 8*t*(2+3*t)/(1-t)^7*x^5/5! + 16*t*(17+78*t+45*t^2)/(1-t)^10*x^7/7! + .... For example, the fourth subdiagonal has o.g.f. 8*t*(2+3*t)/(1-t)^7 = 16*t + 136*t^2 + 616*t^3 + .... - Peter Bala, Apr 23 2012
With offset 0 and initial column of zeros, except for T(0,0) = 1, e.g.f.(t,x) = e^(x*tan(t)) = e^(P(.,x)t) ; the lowering operator, L = atan(d/dx) ; and the raising operator, R = x [1 +(d/dx)^2], where L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x). The sequence is a binomial Sheffer sequence. - Tom Copeland, Oct 01 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 01 2001

A111594 Triangle of arctanh numbers.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 0, 8, 0, 1, 0, 24, 0, 20, 0, 1, 0, 0, 184, 0, 40, 0, 1, 0, 720, 0, 784, 0, 70, 0, 1, 0, 0, 8448, 0, 2464, 0, 112, 0, 1, 0, 40320, 0, 52352, 0, 6384, 0, 168, 0, 1, 0, 0, 648576, 0, 229760, 0, 14448, 0, 240, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Sheffer triangle associated to Sheffer triangle A060524.
For Sheffer triangles (matrices) see the explanation and S. Roman reference given under A048854.
The inverse matrix of A with elements a(n,m), n,m>=0, is given in A111593.
In the umbral calculus notation (see the S. Roman reference) this triangle would be called associated to (1,tanh(y)).
The row polynomials p(n,x):=sum(a(n,m)*x^m,m=0..n), together with the row polynomials s(n,x) of A060524 satisfy the exponential (or binomial) convolution identity s(n,x+y) = sum(binomial(n,k)*s(k,x)*p(n-k,y),k=0..n), n>=0.
Without the n=0 row and m=0 column and signed, this will become the Jabotinsky triangle A049218 (arctan numbers). For Jabotinsky matrices see the Knuth reference under A039692.
The row polynomials p(n,x) (defined above) have e.g.f. exp(x*arctanh(y)).
Exponential Riordan array [1, arctanh(x)] = [1, log(sqrt((1+x)/(1-x)))]. - Paul Barry, Apr 17 2008
Also the Bell transform of A005359. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Binomial convolution of row polynomials:
p(3,x)= 2*x+x^3; p(2,x)=x^2, p(1,x)= x, p(0,x)= 1,
together with those from A060524:
s(3,x)= 5*x+x^3; s(2,x)= 1+x^2, s(1,x)= x, s(0,x)= 1; therefore:
5*(x+y)+(x+y)^3 = s(3,x+y) = 1*s(0,x)*p(3,y) + 3*s(1,x)*p(2,y) + 3*s(2,x)*p(1,y) +1*s(3,x)*p(0,y) = 2*y+y^3 + 3*x*y^2 + 3*(1+x^2)*y + (5*x+x^3).
Triangle begins:
  1;
  0,   1;
  0,   0,    1;
  0,   2,    0,   1;
  0,   0,    8,   0,    1;
  0,  24,    0,  20,    0,  1;
  0,   0,  184,   0,   40,  0,   1;
  0, 720,    0, 784,    0, 70,   0, 1;
  0,   0, 8448,   0, 2464,  0, 112, 0, 1;
...
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    BellMatrix(n -> `if`(n::even, n!, 0), 10); # Peter Luschny, Jan 27 2016
  • Mathematica
    rows = 10;
    t = Table[If[EvenQ[n], n!, 0], {n, 0, rows}];
    T[n_, k_] := BellY[n, k, t];
    Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
  • Sage
    # uses[riordan_array from A256893]
    riordan_array(1, atanh(x), 9, exp=true) # Peter Luschny, Apr 19 2015

Formula

E.g.f. for column m>=0: ((arctanh(x))^m)/m!.
a(n, m) = coefficient of x^n of ((arctanh(x))^m)/m!, n>=m>=0, else 0.
a(n, m) = a(n-1, m-1) + (n-2)*(n-1)*a(n-2, m), a(n, -1):=0, a(0, 0)=1, a(n, m)=0 for n

A006229 Expansion of e.g.f. exp( tan x ).

Original entry on oeis.org

1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
Offset: 0

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059419 and unsigned A111593.

Programs

  • Julia
    function A006229_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 2:n-1 T[n,k] = T[n-1,k-1] + k*(k-1)*T[n-1,k+1] end
            S[n] = sum(T[n,k] for k in 2:n)
        end
    S end
    println(A006229_list(24)) # Peter Luschny, Apr 27 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Tan[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 04 2011 *)
  • Maxima
    a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(tan(x)).
a(n) = sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: 1 + tan(x)/T(0), where T(k) = 4*k+1 - tan(x)/(2 + tan(x)/(4*k+3 - tan(x)/(2 + tan(x)/T(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) = Sum_{i=0..(n-1)/2} binomial(n-1,2*i)*z(i+1)*a(n-2*i-1), a(0)=1, where z(n) is tangent (or "zag") numbers (A000182). - Vladimir Kruchinin, Mar 04 2015 [corrected by Jason Yuen, Dec 29 2024]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001

A060081 Exponential Riordan array (sech(x), tanh(x)).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -5, 0, 1, 5, 0, -14, 0, 1, 0, 61, 0, -30, 0, 1, -61, 0, 331, 0, -55, 0, 1, 0, -1385, 0, 1211, 0, -91, 0, 1, 1385, 0, -12284, 0, 3486, 0, -140, 0, 1, 0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1, -50521, 0, 663061
Offset: 0

Author

Wolfdieter Lang, Mar 29 2001

Keywords

Comments

Previous name was: "Triangle of coefficients (lower triangular matrix) of certain (binomial) convolution polynomials related to 1/cosh(x) and tanh(x). Use trigonometric functions for the unsigned version".
Row sums give A009265(n) (signed); A009244(n) (unsigned). Column sequences without interspersed zeros and unsigned: A000364 (Euler), A000364, A060075-8 for m=0,...,5.
a(n,m) = ((-1)^((n-m)/2))*ay(m+1,(n-m)/2) if n-m is even, else 0; where the rectangular array ay(n,m) is defined in A060058 Formula.
The row polynomials p(n,x) appear in a problem of thermo field dynamics (Bogoliubov transformation for the harmonic Bose oscillator). See the link to a .ps.gz file where they are called R_{n}(x).
The inverse of this Sheffer matrix with elements a(n,m) is the Sheffer matrix A060524. This Sheffer triangle appears in the Moyal star product of the harmonic Bose oscillator: x^{*n} = Sum_{m=0..n} a(n,m) x^m with x = 2 (bar a) a/hbar. See the Th. Spernat link, pp. 28, 29, where the unsigned version is used for y=-ix. - Wolfdieter Lang, Jul 22 2005
In the umbral calculus (see Roman reference under A048854) the p(n,x) are called Sheffer for (g(t)=1/cosh(arctanh(t)) = 1/sqrt(1-t^2), f(t)=arctanh(t)).
p(n,x) := Sum_{m=0..n} a(n,m)*x^m, n >= 0, are monic polynomials satisfying p(n,x+y) = Sum_{k=0..n} binomial(n,k)*p(k,x)*q(n-k,y) (binomial, also called exponential, convolution polynomials) with the row polynomials of the associated triangle q(n,x) := Sum_{m=0..n} A111593(n,m)*x^m. E.g.f. for p(n,x) is exp(x*tanh(z))*cosh(z)(signed). [Corrected by Wolfdieter Lang, Sep 12 2005]
Exponential Riordan array [sech(x), tanh(x)]. Unsigned triangle is [sec(x), tan(x)]. - Paul Barry, Jan 10 2011

Examples

			p(3,x) = -5*x + x^3.
Exponential convolution together with A111593 for row polynomials q(n,x), case n=2: -1+(x+y)^2 = p(2,x+y) = 1*p(0,x)*q(2,y) + 2*p(1,x)*q(1,y) + 1*p(2,x)*q(0,y) = 1*1*y^2 + 2*x*y + 1*(-1+x^2)*1.
Triangle begins:
  1,
  0, 1,
  -1, 0, 1,
  0, -5, 0, 1,
  5, 0, -14, 0, 1,
  0, 61, 0, -30, 0, 1,
  -61, 0, 331, 0, -55, 0, 1,
  0, -1385, 0, 1211, 0, -91, 0, 1,
  1385, 0, -12284, 0, 3486, 0, -140, 0, 1,
  0, 50521, 0, -68060, 0, 8526, 0, -204, 0, 1,
  -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1,
  ...
As a right-aligned triangle:
                                                       1;
                                                    0, 1;
                                                -1, 0, 1;
                                           0,   -5, 0, 1;
                                        5, 0,  -14, 0, 1;
                                 0,    61, 0,  -30, 0, 1;
                            -61, 0,   331, 0,  -55, 0, 1;
                     0,   -1385, 0,  1211, 0,  -91, 0, 1;
               1385, 0,  -12284, 0,  3486, 0, -140, 0, 1;
          0,  50521, 0,  -68060, 0,  8526, 0, -204, 0, 1;
  -50521, 0, 663061, 0, -281210, 0, 18522, 0, -285, 0, 1;
  ...
Production matrix begins
   0,   1;
  -1,   0,   1;
   0,  -4,   0,   1;
   0,   0,  -9,   0,   1;
   0,   0,   0, -16,   0,   1;
   0,   0,   0,   0, -25,   0,   1;
   0,   0,   0,   0,   0, -36,   0,   1;
   0,   0,   0,   0,   0,   0, -49,   0,   1;
   0,   0,   0,   0,   0,   0,   0, -64,   0,   1;
- _Paul Barry_, Jan 10 2011
		

References

  • W. Lang, Two normal ordering problems and certain Sheffer polynomials, in Difference Equations, Special Functions and Orthogonal Polynomials, edts. S. Elaydi et al., World Scientific, 2007, pages 354-368. [From Wolfdieter Lang, Feb 06 2009]

Programs

  • Maple
    riordan := (d,h,n,k) -> coeftayl(d*h^k,x=0,n)*n!/k!:
    A060081 := (n,k) -> riordan(sech(x),tanh(x),n,k):
    seq(print(seq(A060081(n,k),k=0..n)),n=0..5); # Peter Luschny, Apr 15 2015
  • Mathematica
    max = 12; t = Transpose[ Table[ PadRight[ CoefficientList[ Series[ Tanh[x]^m/m!/Cosh[x], {x, 0, max}], x], max + 1, 0]*Table[k!, {k, 0, max}], {m, 0, max}]]; Flatten[ Table[t[[n, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Sep 29 2011 *)
  • Sage
    def A060081_triangle(dim): # computes unsigned T(n, k).
        M = matrix(ZZ,dim,dim)
        for n in (0..dim-1): M[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                M[n,k] = M[n-1,k-1]+(k+1)^2*M[n-1,k+1]
        return M
    A060081_triangle(9) # Peter Luschny, Sep 19 2012

Formula

E.g.f. for column m: (((tanh(x))^m)/m!)/cosh(x), m >= 0. Use trigonometric functions for unsigned case.
a(n, m) = a(n-1, m-1)-((m+1)^2)*a(n-1, m+1); a(0, 0)=1; a(n, -1) := 0, a(n, m)=0 if n < m. Use sum of the two recursion terms for unsigned case.
a(n, k) = (1/(k+1)!)*Sum_{q=0..n} C(n,q)*((-1)^(n-q)+1)*((-1)^(q-k)+1)*Sum_{j=0..q-k} C(j+k,k)*(j+k+1)!*2^(q-j-k-2)*(-1)^j*Stirling2(q+1,j+k+1). - Vladimir Kruchinin, Feb 12 2019

Extensions

New name (using a comment from Paul Barry) from Peter Luschny, Apr 15 2015

A003723 E.g.f. exp(tanh(x)).

Original entry on oeis.org

1, 1, 1, -1, -7, -3, 97, 275, -2063, -15015, 53409, 968167, -752343, -77000363, -166831871, 7433044411, 43685848289, -843598411471, -9398558916159, 107426835190735, 2116926930779225, -14072980460605907
Offset: 0

Keywords

Comments

Row sums of triangle A111593.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[Tanh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Apr 11 2014 *)
  • Maxima
    a(n):=if n=0 then 1 else sum(sum(binomial(k-1,m-1)*k!*(-1)^(m+k)*2^(n-k)*stirling2(n,k),k,m,n)/m!,m,1,n); /* Vladimir Kruchinin, Jun 28 2011 */

Formula

a(n) := sum(m=1..n, sum(k=m..n, binomial(k-1,m-1)*k!*(-1)^(m+k)*2^(n-k)*Stirling2(n,k))/m!), n>0, a(0)=1. - Vladimir Kruchinin, Jun 28 2011
Showing 1-6 of 6 results.