cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A006229 Expansion of e.g.f. exp( tan x ).

Original entry on oeis.org

1, 1, 1, 3, 9, 37, 177, 959, 6097, 41641, 325249, 2693691, 24807321, 241586893, 2558036145, 28607094455, 342232522657, 4315903789009, 57569080467073, 807258131578995, 11879658510739497, 183184249105857781, 2948163649552594737, 49548882107764546223
Offset: 0

Views

Author

Keywords

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 259, Sum_{k} T(n,k).
  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
  • L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row sums of A059419 and unsigned A111593.

Programs

  • Julia
    function A006229_list(len::Int)
        len <= 0 && return BigInt[]
        T = zeros(BigInt, len, len); T[1,1] = 1
        S = Array(BigInt, len); S[1] = 1
        for n in 2:len
            T[n,n] = 1
            for k in 2:n-1 T[n,k] = T[n-1,k-1] + k*(k-1)*T[n-1,k+1] end
            S[n] = sum(T[n,k] for k in 2:n)
        end
    S end
    println(A006229_list(24)) # Peter Luschny, Apr 27 2017
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[Tan[x]],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Oct 04 2011 *)
  • Maxima
    a(n):=sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1, k-1), j, k, n), k, 1, n); /* Vladimir Kruchinin, Aug 05 2010 */
    

Formula

E.g.f.: exp(tan(x)).
a(n) = sum(if oddp(n+k) then 0 else (-1)^((n+k)/2)*sum(j!/k!*stirling2(n,j)*2^(n-j)*(-1)^(n+j-k)*binomial(j-1,k-1),j,k,n),k,1,n), n>0. - Vladimir Kruchinin, Aug 05 2010
E.g.f.: 1 + tan(x)/T(0), where T(k) = 4*k+1 - tan(x)/(2 + tan(x)/(4*k+3 - tan(x)/(2 + tan(x)/T(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Dec 03 2013
a(n) = Sum_{i=0..(n-1)/2} binomial(n-1,2*i)*z(i+1)*a(n-2*i-1), a(0)=1, where z(n) is tangent (or "zag") numbers (A000182). - Vladimir Kruchinin, Mar 04 2015 [corrected by Jason Yuen, Dec 29 2024]

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 08 2001

A047692 Denominators of coefficients in Taylor series for exp(tan(x)).

Original entry on oeis.org

1, 1, 2, 2, 8, 120, 240, 720, 5760, 362880, 3628800, 57600, 691200, 6227020800, 830269440, 261534873600, 20922789888000, 355687428096000, 914624815104000, 426824913715200, 4742499041280000, 51090942171709440000, 3784514234941440000
Offset: 0

Views

Author

Keywords

Examples

			1 + 1*x + (1/2)*x^2 + (1/2)*x^3 + (3/8)*x^4 + (37/120)*x^5 + (59/240)*x^6 + (137/720)*x^7 + (871/5760)*x^8 + ...
		

References

  • CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

Crossrefs

A013516 Denominators in the Taylor expansion exp(cosec(x)-cot(x))=1 + x/2 + x^2/8 + x^3/16 + 3*x^4/128 + 37*x^5/3840 + 59*x^6/15360 + ...

Original entry on oeis.org

1, 2, 8, 16, 128, 3840, 15360, 92160, 1474560, 185794560, 3715891200, 117964800, 2831155200, 51011754393600, 13603134504960, 8569974738124800, 1371195958099968000, 46620662575398912000, 239763407530622976000
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

The numerators are apparently the same as A047691.

Examples

			exp(cosec(x)-cot(x)) = 1 +1*x/(2^1*1!) + 1*x^2/(2^2*2!) + 3*x^3/(2^3*3!) + 9*x^4/(2^4*4!) + 37*x^5/(2^5*5!) +  177*x^6/(2^6*6!) +959*x^7/(2^7*7!)+ ...
		

Crossrefs

Cf. A006229, A002425 (expansion of cosec(x)-cot(x)).

Programs

  • Maple
    A013516 := proc(n)
            exp(csc(x)-cot(x)) ;
            coeftayl( %,x=0,n) ;
            denom(%) ;
    end proc:  # R. J. Mathar, Dec 18 2011

Formula

a(n) = A047692(n) * 2^n. - Sean A. Irvine, Aug 07 2018

Extensions

Corrected by R. J. Mathar, Dec 18 2011

A013522 Numerator of [x^(2n+1)] in the Taylor expansion sinh(cosec(x)-cotan(x))= x/2 +x^3/16 +37*x^5/3840 +137*x^7/92160 +41641*x^9/185794560 + 3887*x^11/117964800 +...

Original entry on oeis.org

1, 1, 37, 137, 41641, 3887, 241586893, 5721418891, 4315903789009, 2832484672207, 183184249105857781, 2154299222076719401, 1431144441595717024523, 386845480523042818420133, 21349170171172632123182767, 38112676874301043070814698873, 25659732417088795005806537367241
Offset: 0

Views

Author

Patrick Demichel (patrick.demichel(AT)hp.com)

Keywords

Comments

Apparently a bisection of A047691.
The numerators in the e.g.f. of x/2, sinh(cosec(x)-cotan(x)) = x/(2^1*1!) +3*x^3/(2^3*3!) +37*x^5/(2^5*5!) +959*x^7/(2^7*7!) +41641*x^9/(2^9*9!)+.. are apparently covered by the absolute values of A003717.

Programs

  • Mathematica
    Numerator[Take[CoefficientList[Series[Sinh[Csc[x] - Cot[x]], {x,0,45}], x], {2, -1, 2}]] (* G. C. Greubel, Nov 12 2016 *)

Extensions

Name edited by R. J. Mathar, Dec 19 2011
Showing 1-4 of 4 results.