A003754 Numbers with no adjacent 0's in binary expansion.
0, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 23, 26, 27, 29, 30, 31, 42, 43, 45, 46, 47, 53, 54, 55, 58, 59, 61, 62, 63, 85, 86, 87, 90, 91, 93, 94, 95, 106, 107, 109, 110, 111, 117, 118, 119, 122, 123, 125, 126, 127, 170, 171, 173, 174, 175, 181
Offset: 1
Examples
21 is in the sequence because 21 = 10101_2. '10101' has no '00' present in it. - _Indranil Ghosh_, Feb 11 2017 From _Gus Wiseman_, Apr 04 2020: (Start) The terms together with the corresponding compositions begin: 0: () 30: (1,1,1,2) 90: (2,1,2,2) 1: (1) 31: (1,1,1,1,1) 91: (2,1,2,1,1) 2: (2) 42: (2,2,2) 93: (2,1,1,2,1) 3: (1,1) 43: (2,2,1,1) 94: (2,1,1,1,2) 5: (2,1) 45: (2,1,2,1) 95: (2,1,1,1,1,1) 6: (1,2) 46: (2,1,1,2) 106: (1,2,2,2) 7: (1,1,1) 47: (2,1,1,1,1) 107: (1,2,2,1,1) 10: (2,2) 53: (1,2,2,1) 109: (1,2,1,2,1) 11: (2,1,1) 54: (1,2,1,2) 110: (1,2,1,1,2) 13: (1,2,1) 55: (1,2,1,1,1) 111: (1,2,1,1,1,1) 14: (1,1,2) 58: (1,1,2,2) 117: (1,1,2,2,1) 15: (1,1,1,1) 59: (1,1,2,1,1) 118: (1,1,2,1,2) 21: (2,2,1) 61: (1,1,1,2,1) 119: (1,1,2,1,1,1) 22: (2,1,2) 62: (1,1,1,1,2) 122: (1,1,1,2,2) 23: (2,1,1,1) 63: (1,1,1,1,1,1) 123: (1,1,1,2,1,1) 26: (1,2,2) 85: (2,2,2,1) 125: (1,1,1,1,2,1) 27: (1,2,1,1) 86: (2,2,1,2) 126: (1,1,1,1,1,2) 29: (1,1,2,1) 87: (2,2,1,1,1) 127: (1,1,1,1,1,1,1) (End)
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..50000 (terms 1..1000 from T. D. Noe)
- J.-P. Allouche, J. Shallit and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math., Vol. 292, No. 1-3 (2005), pp. 1-15.
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
- David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.5.
- Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
- Tomi Kärki, Anne Lacroix, and Michel Rigo, On the recognizability of self-generating sets, Journal of Integer Sequences, Vol. 13 (2010), Article 10.2.2.
- Wikipedia, Ahnentafel.
- Witzel, Stefan On panel-regular ~A2 lattices Geom. Dedicata 191, 85-135 (2017).
- Index entries for 2-automatic sequences.
- Index entries for sequences related to binary expansion of n.
Crossrefs
A104326(n) = A007088(a(n)); A023416(a(n)) = A087116(a(n)); A107782(a(n)) = 0; A107345(a(n)) = 1; A107359(n) = a(n+1) - a(n); a(A001911(n)) = A000225(n); a(A000071(n+2)) = A000975(n). - Reinhard Zumkeller, May 25 2005
Cf. A003796 (no 000), A004745 (no 001), A004746 (no 010), A004744 (no 011), A004742 (no 101), A004743 (no 110), A003726 (no 111).
Complement of A004753.
Positions of numbers <= 2 in A333766 (see this and A066099 for other sequences about compositions in standard order).
Cf. A318928.
Programs
-
Haskell
a003754 n = a003754_list !! (n-1) a003754_list = filter f [0..] where f x = x == 0 || x `mod` 4 > 0 && f (x `div` 2) -- Reinhard Zumkeller, Dec 07 2012, Oct 19 2011
-
Maple
isA003754 := proc(n) local bdgs ; bdgs := convert(n,base,2) ; for i from 2 to nops(bdgs) do if op(i,bdgs)=0 and op(i-1,bdgs)= 0 then return false; end if; end do; return true; end proc: A003754 := proc(n) option remember; if n= 1 then 0; else for a from procname(n-1)+1 do if isA003754(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 23 2010
-
Mathematica
Select[ Range[0, 200], !MatchQ[ IntegerDigits[#, 2], {_, 0, 0, _}]&] (* Jean-François Alcover, Oct 25 2011 *) Select[Range[0,200],SequenceCount[IntegerDigits[#,2],{0,0}]==0&] (* The program uses the SequenceCount function from Mathematica version 10 *) (* Harvey P. Dale, May 21 2015 *)
-
PARI
is(n)=n=bitor(n,n>>1)+1; n>>=valuation(n,2); n==1 \\ Charles R Greathouse IV, Feb 06 2017
-
Python
i=0 while i<=500: if "00" not in bin(i)[2:]: print(str(i), end=',') i+=1 # Indranil Ghosh, Feb 11 2017
Formula
Sum_{n>=2} 1/a(n) = 4.356588498070498826084131338899394678478395568880140707240875371925764128502... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022
Extensions
Removed "2" from the name, because, for example, one could argue that 10001 has 3 adjacent zeros, not 2. - Gus Wiseman, Apr 04 2020
Comments