cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003814 Numbers k such that the continued fraction for sqrt(k) has odd period length.

Original entry on oeis.org

2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317
Offset: 1

Views

Author

N. J. A. Sloane, Walter Gilbert

Keywords

Comments

All primes of the form 4m + 1 are here. - T. D. Noe, Mar 19 2012
These numbers have no prime factors of the form 4m + 3. - Thomas Ordowski, Jul 01 2013
This sequence is a proper subsequence of the so-called 1-happy number products A007969. See the W. Lang link there, eq. (1), with B = 1, C = a(n), also with a table at the end. This is due to the soluble Pell equation R^2 - C*S^2 = -1 for C = a(n). See e.g., Perron, Satz 3.18. on p. 93, and the table on p. 91 with the numbers D of the first column that do not have a number in brackets in the second column (Teilnenner von sqrt(D)). - Wolfdieter Lang, Sep 19 2015

References

  • W. Paulsen, Calkin-Wilf sequences for irrational numbers, Fib. Q., 61:1 (2023), 51-59.
  • O. Perron, Die Lehre von den Kettenbrüchen, Band I, Teubner Verlagsgesellschaft, Stuttgart, 1954.
  • Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).

Crossrefs

Cf. A031396.
Cf. A206586 (period has positive even length).

Programs

  • Maple
    isA003814 := proc(n)
        local cf,p ;
        if issqr(n) then
            return false;
        end if;
        for p in numtheory[factorset](n) do
            if modp(p,4) = 3 then
                return false;
            end if;
        end do:
        cf := numtheory[cfrac](sqrt(n),'periodic','quotients') ;
        type( nops(op(2,cf)),'odd') ;
    end proc:
    A003814 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA003814(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003814(n),n=1..40) ; # R. J. Mathar, Oct 19 2014
  • Mathematica
    Select[Range[100], ! IntegerQ[Sqrt[#]] && OddQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &] (* T. D. Noe, Mar 19 2012 *)
  • PARI
    cyc(cf) = {
      if(#cf==1, return([])); \\ There is no cycle
      my(s=[]);
      for(k=2, #cf,
        s=concat(s, cf[k]);
        if(cf[k]==2*cf[1], return(s)) \\ Cycle found
      );
      0 \\ Cycle not found
    }
    select(n->#cyc(contfrac(sqrt(n)))%2==1, vector(400, n, n)) \\ Colin Barker, Oct 19 2014