A003814 Numbers k such that the continued fraction for sqrt(k) has odd period length.
2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317
Offset: 1
Keywords
References
- W. Paulsen, Calkin-Wilf sequences for irrational numbers, Fib. Q., 61:1 (2023), 51-59.
- O. Perron, Die Lehre von den Kettenbrüchen, Band I, Teubner Verlagsgesellschaft, Stuttgart, 1954.
- Kenneth H. Rosen, Elementary Number Theory and Its Applications, Addison-Wesley, 1984, page 426 (but beware of errors!).
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- S. R. Finch, Class number theory [Cached copy, with permission of the author]
- P. J. Rippon and H. Taylor, Even and odd periods in continued fractions of square roots, Fibonacci Quarterly 42, May 2004, pp. 170-180.
Crossrefs
Programs
-
Maple
isA003814 := proc(n) local cf,p ; if issqr(n) then return false; end if; for p in numtheory[factorset](n) do if modp(p,4) = 3 then return false; end if; end do: cf := numtheory[cfrac](sqrt(n),'periodic','quotients') ; type( nops(op(2,cf)),'odd') ; end proc: A003814 := proc(n) option remember; if n = 1 then 2; else for a from procname(n-1)+1 do if isA003814(a) then return a; end if; end do: end if; end proc: seq(A003814(n),n=1..40) ; # R. J. Mathar, Oct 19 2014
-
Mathematica
Select[Range[100], ! IntegerQ[Sqrt[#]] && OddQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &] (* T. D. Noe, Mar 19 2012 *)
-
PARI
cyc(cf) = { if(#cf==1, return([])); \\ There is no cycle my(s=[]); for(k=2, #cf, s=concat(s, cf[k]); if(cf[k]==2*cf[1], return(s)) \\ Cycle found ); 0 \\ Cycle not found } select(n->#cyc(contfrac(sqrt(n)))%2==1, vector(400, n, n)) \\ Colin Barker, Oct 19 2014
Comments