cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 49 results. Next

A010333 Length of period of continued for sqrt(A003814(n)).

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 5, 1, 3, 1, 5, 7, 11, 1, 7, 5, 1, 5, 5, 11, 1, 9, 15, 9, 1, 5, 3, 9, 1, 9, 17, 1, 5, 21, 5, 13, 1, 7, 5, 1, 5, 11, 17, 7, 1, 9, 3, 7, 21, 13, 1, 5, 11, 17, 7, 11, 1, 19, 5, 5, 7, 15, 1, 5, 3, 5, 9, 21, 21, 1, 21, 37, 7, 21, 1, 5, 17, 25, 3, 15, 13, 1, 9, 19, 19, 1, 5, 7, 39
Offset: 1

Views

Author

N. J. A. Sloane, Walter Gilbert

Keywords

Comments

If the period length of the continued fraction of a quadratic surd sqrt(D) is odd, the negative Pell equation x^2 - D y^2 = -1 has (infinite) solutions.

Crossrefs

Cf. A003814.

Programs

A031396 Numbers k such that Pell equation x^2 - k*y^2 = -1 is soluble.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 26, 29, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 125, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 250, 257, 265, 269, 274, 277, 281, 290, 293, 298
Offset: 1

Views

Author

Keywords

Comments

Terms are divisible neither by 4 nor by a prime of the form 4*k + 3 (although these conditions are not sufficient - compare A031398). - Lekraj Beedassy, Aug 17 2005
This is the set of integer solutions of all quadratic forms m^2*x^2 -/+ b*x + c with discriminant b^2 - 4*m^2*c = -4 where m is any term of A004613. - Klaus Purath, Jun 18 2025

References

  • Harvey Cohn, "Advanced Number Theory".

Crossrefs

Equals {1} U A003814.
Cf. A031398, A002313, A133204, A130226 (values of x).
See also A322781, A323271, A323272.

Programs

A031423 Numbers k such that the continued fraction for sqrt(k) has odd period and if the last term of the periodic part is deleted then there are a pair of central terms both equal to 10.

Original entry on oeis.org

701, 1418, 1493, 2197, 2290, 3257, 4793, 6154, 6466, 8389, 8753, 9577, 9965, 10765, 11257, 11677, 12541, 14218, 14929, 15413, 15658, 16001, 16501, 17009, 17786, 18049, 18314, 18581, 19121, 21577, 22157, 22745, 24557, 24677, 25805, 26561, 27530, 28517
Offset: 1

Views

Author

Keywords

Crossrefs

Subsequence of A003814.

Programs

  • Mathematica
    n = 1; t = {}; While[Length[t] < 50, n++; If[! IntegerQ[Sqrt[n]], c = ContinuedFraction[Sqrt[n]]; len = Length[c[[2]]]; If[OddQ[len] && c[[2, (len + 1)/2]] == 10 && c[[2, (len + 1)/2 - 1]] == 10, AppendTo[t, n]]]]; t (* T. D. Noe, Apr 04 2014; corrected by Georg Fischer, Jun 23 2019 *)
  • Python
    from sympy.ntheory.continued_fraction import continued_fraction_periodic
    A031423_list = []
    for n in range(1,10**4):
        cf = continued_fraction_periodic(0,1,n)
        if len(cf) > 1 and len(cf[1]) > 1 and len(cf[1]) % 2 and cf[1][len(cf[1])//2] == 10:
            A031423_list.append(n) # Chai Wah Wu, Sep 16 2021

Extensions

a(1) corrected by T. D. Noe, Apr 04 2014
a(1) = 26 removed by Georg Fischer, Jun 23 2019

A172000 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(n)) has norm -1.

Original entry on oeis.org

2, 5, 8, 10, 13, 17, 18, 20, 26, 29, 32, 37, 40, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 80, 82, 85, 89, 90, 97, 98, 101, 104, 106, 109, 113, 116, 117, 122, 125, 128, 130, 137, 145, 148, 149, 153, 157, 160, 162, 164, 170, 173, 180, 181, 185, 193, 197, 200
Offset: 1

Views

Author

Max Alekseyev, Jan 21 2010

Keywords

Comments

Complement of A087643 in the nonsquare integers A000037.
Subsequence of A000415, their set difference form A172001.
Contains A003814 as a subsequence, their squarefree terms coincide and form A003654.
It seems that this sequence also gives the values of n such that the equation x^2 - n*y^2 = n has integer solutions. - Colin Barker, Aug 20 2013

Programs

  • Mathematica
    cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == -1, AppendTo[cr, n]]], {n, 2, 1000}]; cr (* Artur Jasinski, Oct 10 2011 *)
  • PARI
    { for(n=1,1000, if(issquare(n),next); if( norm(bnfinit(x^2-n).fu[1])==-1, print1(n,", ")) ) }

Formula

A positive integer n is in this sequence iff its squarefree core A007913(n) belongs to A003654.

Extensions

Edited by Max Alekseyev, Mar 09 2010

A003654 Squarefree integers m such that the fundamental unit of Q(sqrt(m)) has norm -1. Also, squarefree integers m such that the Pell equation x^2 - m*y^2 = -1 is soluble.

Original entry on oeis.org

2, 5, 10, 13, 17, 26, 29, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317, 337, 346, 349, 353, 362
Offset: 1

Views

Author

N. J. A. Sloane, Mira Bernstein. Entry revised by N. J. A. Sloane, Jun 11 2012

Keywords

Comments

The squarefree elements of A003814 and A172000. - Max Alekseyev, Jun 01 2009
Together with {1} and A031398 forms a disjoint partition of A020893. That is, A020893 = {1} U A003654 U A031398. - Max Alekseyev, Mar 09 2010
Squarefree integers m such that Q(sqrt(m)) contains the infinite continued fraction [k, k, k, k, k, ...] for some positive integer k. For example, Q(sqrt(5)) contains [1, 1, 1, 1, 1, ...] which equals (1 + sqrt(5))/2. - Greg Dresden, Jul 23 2010

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 46.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 56.
  • W. Paulsen, Calkin-Wilf sequences for irrational numbers, Fib. Q., 61:1 (2023), 51-59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    isA003654 := proc(n)
        local cf,p ;
        if not numtheory[issqrfree](n) then
            return false;
        end if;
        for p in numtheory[factorset](n) do
            if modp(p,4) = 3 then
                return false;
            end if;
        end do:
        cf := numtheory[cfrac](sqrt(n),'periodic','quotients') ;
        type( nops(op(2,cf)),'odd') ;
    end proc:
    A003654 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA003654(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003654(n),n=1..40) ; # R. J. Mathar, Oct 19 2014
  • Mathematica
    Reap[For[n = 2, n < 1000, n++, If[SquareFreeQ[n], sol = Solve[x^2 - n y^2 == -1, {x, y}, Integers]; If[sol != {}, Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Mar 24 2020 *)

Extensions

Edited by Max Alekseyev, Mar 17 2010

A077426 Nonsquare integers n such that the continued fraction (sqrt(n)+1)/2 has odd period length.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 173, 181, 185, 193, 197, 229, 233, 241, 257, 265, 269, 277, 281, 293, 313, 317, 325, 337, 349, 353, 365, 373, 389, 397, 401, 409, 421, 425, 433, 445, 449, 457, 461, 481, 485
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Nonsquare integers n for which Pell equation x^2 - n*y^2 = -4 has infinitely many integer solutions. The smallest solutions are given in A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, table p. 108).

Crossrefs

A subsequence of A077425.
Odd elements of A003814.

Programs

  • Maple
    isOddPrim := proc(n::integer)
        local cf;
        cf := numtheory[cfrac]((sqrt(n)+1)/2,'periodic','quotients') ;
        if nops(op(2,cf)) mod 2 =1 then
            RETURN(true) ;
        else
            RETURN(false) ;
        fi ;
    end:
    notA077426 := proc(n::integer)
        if issqr(n) then
            RETURN(true) ;
        elif not isOddPrim(n) then
            RETURN(true) ;
        else
            RETURN(false) ;
        fi ;
    end:
    A077426 := proc(n::integer)
        local resul,i ;
        resul := 5 ;
        i := 1 ;
        while i < n do
            resul := resul+4 ;
            while notA077426(resul) do
                resul := resul+4 ;
            od ;
            i:= i+1 ;
        od ;
        RETURN(resul) ;
    end:
    for n from 1 to 61 do print(A077426(n)) ; od : # R. J. Mathar, Apr 25 2006
  • Mathematica
    fQ[n_] := !IntegerQ@ Sqrt@ n && OddQ@ Length@ ContinuedFraction[(Sqrt@ n + 1)/2][[2]]; Select[Range@ 500, fQ] (* Robert G. Wilson v, Nov 17 2012 *)

Extensions

Edited and extended by Max Alekseyev, Mar 03 2010
Edited by Max Alekseyev, Mar 05 2010

A077232 a(n) is smallest natural number satisfying Pell equation a^2 - d(n)*b^2= +1 or = -1, with d(n)=A000037(n) (a nonsquare). Corresponding smallest b(n)=A077233(n).

Original entry on oeis.org

1, 2, 2, 5, 8, 3, 3, 10, 7, 18, 15, 4, 4, 17, 170, 9, 55, 197, 24, 5, 5, 26, 127, 70, 11, 1520, 17, 23, 35, 6, 6, 37, 25, 19, 32, 13, 3482, 199, 161, 24335, 48, 7, 7, 50, 649, 182, 485, 89, 15, 151, 99, 530, 31, 29718, 63, 8, 8, 65, 48842, 33, 7775, 251, 3480, 17, 1068, 43, 26, 57799, 351, 53, 80, 9, 9, 82, 55, 378, 10405, 28, 197, 500, 19, 1574, 1151, 12151, 2143295, 39, 49, 5604, 99, 10, 10, 101, 227528
Offset: 1

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

If d(n)=A000037(n) is from A003654 (that is if the regular continued fraction for sqrt(d(n)) has odd (primitive) period length) then the -1 option applies. For such d(n) the minimal a(n) and b(n) numbers for the +1 option are 2*a(n)^2+1 and 2*a(n)*b(n), respectively (see Perron I, pp. 94,95).
If d(n)=A000037(n)= k^2+1, k=1,2,.., then the a^2 - d(n)*b^2 = -1 Pell equation has the minimal solution a(n)=k and b(n)=1. If d(n)=A000037(n)= k^2-1, k=2,3,..., then the a^2 - d(n)*b^2 = +1 Pell equation has the minimal solution a=k and b=1.
The general integer solutions (up to signs) of Pell equation a^2 - d(n)*b^2 = +1 with d(n)=A000037(n), but not from A003654, are a(n,p)= T(p+1,a(n)) and b(n,p)= b(n)*S(p,2*a(n)), p=0,1,... If d(n)=A000037(n) is also from A003654 then these solutions are a(n,p)= T(p+1,2*a(n)^2+1) and b(n,p)= 2*a(n)*b(n)*S(p,2*(2*a(n)^2+1)), p=0,1,... Here T(n,x), resp. S(n,x) := U(n,x/2), are Chebyshev's polynomials of the first, resp. second, kind. See A053120 and A049310.
The general integer solutions (up to signs) of the Pell equation a^2 - d(n)*b^2 = -1 with d(n)=A000037(n)= A003654(k), for some k>=1, are a(n,p) = a(n)*(S(n,2*(2*a(n)^2)+1) + S(n-1,2*(2*a(n)^2)+1)) and b(n,p) = b(n)*(S(n,2*(2*a(n)^2)+1) - S(n-1,2*(2*a(n)^2)+1)) with the S(n,x) := U(n,x/2) Chebyshev polynomials. S(-1,x) := 0.
If the trivial solution x=1, y=0 is included, the sequence becomes A006702. - T. D. Noe, May 17 2007

Examples

			d=10=A000037(7)=A003654(3), therefore a(7)^2=10*b(7)^2 -1, i.e. 3^2=10*1^2 -1 and 2*a(7)^2+1=19 and 2*a(7)*b(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1.
d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the a^2 - d*b^2 = -1 Pell equation and a(8)=10 and b(8)=A077233(8)=3 satisfy 10^2 - 11*3^2 = +1.
10=d(7)=A000037(7)=A003654(3)=3^2+1 hence a(7)=3 and b(7)=1 are the smallest numbers satisfying a^2-10*b^2=-1.
8=d(6)=A000037(6)=3^2-1 (not in A003654) hence a(6)=3 and b(6)=1 are the smallest numbers satisfying a^2-8*b^2=+1.
		

References

  • T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301.
  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95).

Crossrefs

Programs

  • Mathematica
    nmax = 500;
    nconv = 200; (* The number of convergents 'nconv' should be increased if the linear recurrence is not found for some terms. *)
    nonSquare[n_] := n + Round[Sqrt[n]];
    a[n_] := a[n] = Module[{lr}, lr = FindLinearRecurrence[ Numerator[ Convergents[ Sqrt[nonSquare[n]], nconv]]]; (1/2) SelectFirst[lr, #>1&]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Mar 10 2021 *)

Formula

a(n)=sqrt(A000037(n)*A077233(n)^2 + (-1)^(c(n))) with c(n)=1 if A000037(n)=A003654(k) for some k>=1 else c(n)=0.

A077233 a(n) is smallest natural number satisfying Pell equation b^2- d(n)*a^2= +1 or = -1, with d(n)=A000037(n) (nonsquare). Corresponding smallest b(n)=A077232(n).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 1, 3, 2, 5, 4, 1, 1, 4, 39, 2, 12, 42, 5, 1, 1, 5, 24, 13, 2, 273, 3, 4, 6, 1, 1, 6, 4, 3, 5, 2, 531, 30, 24, 3588, 7, 1, 1, 7, 90, 25, 66, 12, 2, 20, 13, 69, 4, 3805, 8, 1, 1, 8, 5967, 4, 936, 30, 413, 2, 125, 5, 3, 6630, 40, 6, 9, 1, 1, 9, 6, 41, 1122, 3, 21, 53, 2, 165, 120, 1260, 221064, 4, 5, 569, 10, 1, 1, 10, 22419
Offset: 1

Views

Author

Wolfdieter Lang, Nov 08 2002

Keywords

Comments

If d(n)=A000037(n) is from A003654 (that is if the regular continued fraction for sqrt(d(n)) has odd (primitive) period length) then the -1 option applies. For such d(n) the minimal b(n) and a(n) numbers for the +1 option are 2*b(n)^2 + 1 and 2*b(n)*a(n), respectively (see Perron I, pp. 94,p5).
For general integer solutions see A077232 comments.
If the trivial solution x=1, y=0 is included, the sequence becomes A006703. - T. D. Noe, May 17 2007

Examples

			d=10=A000037(7)=A003654(3), therefore a(7)=1 and b(7)=A077232(7)=3 give 3^2=10*1^2 -1 and 2*b(7)^2+1=19 and 2*b(7)*a(7)=2*3*1=6 satisfy 19^2 - 10*6^2 = +1.
d=11=A000037(8) is not in A003654, therefore there is no (nontrivial) solution of the b^2 - d*a^2 = -1 Pell equation and a(8)=3 and b(8)=A077232(8)=10 satisfy 10^2 - 11*3^2 = +1. See A077232 for further examples.
		

References

  • T. Nagell, "Introduction to Number Theory", Chelsea Pub., New York, 1964, table p. 301.
  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 26, p. 91 with explanation on pp. 94,95).

Crossrefs

Programs

  • Mathematica
    nmax = 500;
    nconv = 200; (* The number of convergents 'nconv' should be increased if the linear recurrence is not found for some terms. *)
    nonSquare[n_] := n + Round[Sqrt[n]];
    b[n_] := b[n] = Module[{lr}, lr = FindLinearRecurrence[ Numerator[ Convergents[ Sqrt[nonSquare[n]], nconv]]]; (1/2) SelectFirst[lr, #>1&]];
    a[n_] := If[n == 1, 1, SelectFirst[{Sqrt[(b[n]^2 - 1)/nonSquare[n]], Sqrt[(b[n]^2 + 1)/nonSquare[n]]}, IntegerQ]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, nmax}] (* Jean-François Alcover, Mar 10 2021 *)

Formula

a(n)=sqrt((A077232(n)^2 - (-1)^(c(n)))/A000037(n)) with c(n)=1 if A000037(n)=A003654(k) for some k>=1 else c(n)=0.

A206586 Numbers k such that the periodic part of the continued fraction of sqrt(k) has positive even length.

Original entry on oeis.org

3, 6, 7, 8, 11, 12, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27, 28, 30, 31, 32, 33, 34, 35, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 51, 52, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 79, 80, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94
Offset: 1

Views

Author

T. D. Noe, Mar 19 2012

Keywords

Comments

By making the length positive, we exclude squares. See A206587 for this sequence and the squares. All primes of the form 4m + 3 are here.

Crossrefs

Cf. A003814 (period is odd), A206587.

Programs

  • Mathematica
    Select[Range[100], ! IntegerQ[Sqrt[#]] && EvenQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &]
  • PARI
    cyc(cf) = {
      if(#cf==1, return(0)); \\ There is no cycle
      my(s=[]);
      for(k=2, #cf,
        s=concat(s, cf[k]);
        if(cf[k]==2*cf[1], return(s)) \\ Cycle found
      );
      0 \\ Cycle not found
    }
    select(n->(t=#cyc(contfrac(sqrt(n))))>0 && t%2==0, vector(100, n, n)) \\ Colin Barker, Oct 19 2014

A031397 Nonsquarefree n such that Pell equation x^2 - n y^2 = -1 is soluble.

Original entry on oeis.org

50, 125, 250, 325, 338, 425, 845, 925, 1025, 1250, 1325, 1445, 1450, 1525, 1625, 1682, 1825, 1850, 2050, 2125, 2197, 2425, 2725, 2738, 2825, 2873, 2890, 3050, 3125, 3250, 3425, 3625, 3725, 3925, 4250, 4325, 4394, 4625, 4825, 4901, 4913
Offset: 1

Views

Author

Keywords

References

  • Harvey Cohn, Advanced Number Theory, Dover Publications, New York, N.Y. (1980).
  • S Vidhyalakshmi, V Krithika, K Agalya, On The Negative Pell Equation, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016) www.ijeter.everscience.org,

Crossrefs

Equals {A003814} minus {A003654}, cf. A031396.

Programs

  • Maple
    filter:= t -> not numtheory:-issqrfree(t) and [isolve(x^2 - t*y^2 = -1)]<>[]:
    select(filter, [$1..10000]); # Robert Israel, Jul 10 2018
  • Mathematica
    r[n_] := Reduce[x>0 && y>0 && x^2 - n y^2 == -1, {x, y}, Integers];
    Reap[For[n = 1, n <= 5000, n++, If[!SquareFreeQ[n], If[r[n] =!= False, Print[n]; Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Mar 05 2019 *)

Extensions

Offset changed by Robert Israel, Jul 10 2018
Showing 1-10 of 49 results. Next