cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A087643 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(n)) has norm 1.

Original entry on oeis.org

3, 6, 7, 11, 12, 14, 15, 19, 21, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 69, 70, 71, 75, 76, 77, 78, 79, 83, 84, 86, 87, 88, 91, 92, 93, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 112, 114
Offset: 3

Views

Author

Thomas Baruchel, Sep 16 2003

Keywords

Comments

No quadratic number with a fully periodical continued fraction of period 1 can be written as (a+b*sqrt(n))/c with n allowed to have square factors.
Subsequence of the squarefree terms is A087642.

Crossrefs

Programs

  • Mathematica
    cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == 1, AppendTo[cr, n]]], {n, 2, 1000}]; cr (* Artur Jasinski, Oct 10 2011 *)

Extensions

Edited by Max Alekseyev, May 03 2010

A003654 Squarefree integers m such that the fundamental unit of Q(sqrt(m)) has norm -1. Also, squarefree integers m such that the Pell equation x^2 - m*y^2 = -1 is soluble.

Original entry on oeis.org

2, 5, 10, 13, 17, 26, 29, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 130, 137, 145, 149, 157, 170, 173, 181, 185, 193, 197, 202, 218, 226, 229, 233, 241, 257, 265, 269, 274, 277, 281, 290, 293, 298, 313, 314, 317, 337, 346, 349, 353, 362
Offset: 1

Views

Author

N. J. A. Sloane, Mira Bernstein. Entry revised by N. J. A. Sloane, Jun 11 2012

Keywords

Comments

The squarefree elements of A003814 and A172000. - Max Alekseyev, Jun 01 2009
Together with {1} and A031398 forms a disjoint partition of A020893. That is, A020893 = {1} U A003654 U A031398. - Max Alekseyev, Mar 09 2010
Squarefree integers m such that Q(sqrt(m)) contains the infinite continued fraction [k, k, k, k, k, ...] for some positive integer k. For example, Q(sqrt(5)) contains [1, 1, 1, 1, 1, ...] which equals (1 + sqrt(5))/2. - Greg Dresden, Jul 23 2010

References

  • D. A. Buell, Binary Quadratic Forms. Springer-Verlag, NY, 1989, pp. 224-241.
  • M. Kraitchik, Recherches sur la Théorie des Nombres. Gauthiers-Villars, Paris, Vol. 1, 1924, Vol. 2, 1929, see Vol. 1, p. 46.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 56.
  • W. Paulsen, Calkin-Wilf sequences for irrational numbers, Fib. Q., 61:1 (2023), 51-59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    isA003654 := proc(n)
        local cf,p ;
        if not numtheory[issqrfree](n) then
            return false;
        end if;
        for p in numtheory[factorset](n) do
            if modp(p,4) = 3 then
                return false;
            end if;
        end do:
        cf := numtheory[cfrac](sqrt(n),'periodic','quotients') ;
        type( nops(op(2,cf)),'odd') ;
    end proc:
    A003654 := proc(n)
        option remember;
        local a;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA003654(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A003654(n),n=1..40) ; # R. J. Mathar, Oct 19 2014
  • Mathematica
    Reap[For[n = 2, n < 1000, n++, If[SquareFreeQ[n], sol = Solve[x^2 - n y^2 == -1, {x, y}, Integers]; If[sol != {}, Sow[n]]]]][[2, 1]] (* Jean-François Alcover, Mar 24 2020 *)

Extensions

Edited by Max Alekseyev, Mar 17 2010

A077426 Nonsquare integers n such that the continued fraction (sqrt(n)+1)/2 has odd period length.

Original entry on oeis.org

5, 13, 17, 29, 37, 41, 53, 61, 65, 73, 85, 89, 97, 101, 109, 113, 125, 137, 145, 149, 157, 173, 181, 185, 193, 197, 229, 233, 241, 257, 265, 269, 277, 281, 293, 313, 317, 325, 337, 349, 353, 365, 373, 389, 397, 401, 409, 421, 425, 433, 445, 449, 457, 461, 481, 485
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2002

Keywords

Comments

Nonsquare integers n for which Pell equation x^2 - n*y^2 = -4 has infinitely many integer solutions. The smallest solutions are given in A078356 and A078357.

References

  • O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, table p. 108).

Crossrefs

A subsequence of A077425.
Odd elements of A003814.

Programs

  • Maple
    isOddPrim := proc(n::integer)
        local cf;
        cf := numtheory[cfrac]((sqrt(n)+1)/2,'periodic','quotients') ;
        if nops(op(2,cf)) mod 2 =1 then
            RETURN(true) ;
        else
            RETURN(false) ;
        fi ;
    end:
    notA077426 := proc(n::integer)
        if issqr(n) then
            RETURN(true) ;
        elif not isOddPrim(n) then
            RETURN(true) ;
        else
            RETURN(false) ;
        fi ;
    end:
    A077426 := proc(n::integer)
        local resul,i ;
        resul := 5 ;
        i := 1 ;
        while i < n do
            resul := resul+4 ;
            while notA077426(resul) do
                resul := resul+4 ;
            od ;
            i:= i+1 ;
        od ;
        RETURN(resul) ;
    end:
    for n from 1 to 61 do print(A077426(n)) ; od : # R. J. Mathar, Apr 25 2006
  • Mathematica
    fQ[n_] := !IntegerQ@ Sqrt@ n && OddQ@ Length@ ContinuedFraction[(Sqrt@ n + 1)/2][[2]]; Select[Range@ 500, fQ] (* Robert G. Wilson v, Nov 17 2012 *)

Extensions

Edited and extended by Max Alekseyev, Mar 03 2010
Edited by Max Alekseyev, Mar 05 2010

A194366 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(n)) has norm 1 and can be written as x+y*sqrt(d) with integers x, y where d is the squarefree part of n.

Original entry on oeis.org

3, 6, 7, 11, 12, 14, 15, 19, 22, 23, 24, 27, 28, 30, 31, 33, 34, 35, 38, 39, 42, 43, 44, 46, 47, 48, 51, 54, 55, 56, 57, 59, 60, 62, 63, 66, 67, 70, 71, 75, 76, 78, 79, 83, 86, 87, 88, 91, 92, 94, 95, 96, 99, 102, 103, 105, 107, 108, 110, 111, 112, 114, 115
Offset: 1

Views

Author

Artur Jasinski, Oct 10 2011

Keywords

Comments

This sequence is a subsequence of A087643.

Examples

			35 belongs to this sequence because x^2 + 35*y^2 = 1 has the integer solution x=6, y=1.
		

Crossrefs

Programs

  • Mathematica
    cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == 1, k1 = Max[Denominator[d1], Denominator[d2]];  If[k1 == 1, AppendTo[cr, n]]]], {n, 2, 100}]; cr

Extensions

Definition clarified by Emmanuel Vantieghem, Mar 06 2017

A197115 Nonsquare positive integers k such that the fundamental unit of the quadratic field Q(sqrt(k)) has norm -1 and can be written as x + y*sqrt(d) with integers x, y where d is the squarefree part of k.

Original entry on oeis.org

2, 8, 10, 17, 18, 26, 32, 37, 40, 41, 50, 58, 65, 68, 72, 73, 74, 82, 89, 90, 97, 98, 101, 104, 106, 113, 122, 128, 130, 137, 145, 148, 153, 160, 162, 164, 170, 185, 193, 197, 200, 202, 218, 226, 232, 233, 234, 241, 242, 250, 257, 260, 265, 269, 272, 274
Offset: 1

Views

Author

Artur Jasinski, Oct 10 2011

Keywords

Comments

This sequence is a subsequence of A172000.

Crossrefs

Programs

  • Mathematica
    cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d3 = Expand[(d1 + d2) (d1 - d2)]; If[d3 == -1, k1 = Max[Denominator[d1], Denominator[d2]];   If[k1 == 1, AppendTo[cr, n]]]], {n, 2, 400}]; cr

Extensions

Definition clarified by Emmanuel Vantieghem, Mar 06 2017

A197127 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(d))is singular.

Original entry on oeis.org

6, 14, 22, 30, 34, 38, 42, 46, 54, 56, 62, 66, 69, 70, 78, 86, 87, 93, 94, 102, 110, 114, 115, 118, 126, 130, 132, 134, 138, 142, 146, 150, 154, 155, 156, 158, 159, 166, 174, 177, 178, 182, 183, 184, 185, 186, 190, 194, 198, 206, 210, 214, 220, 222, 228, 230
Offset: 1

Views

Author

Artur Jasinski, Oct 10 2011

Keywords

Comments

x^2+n*y^2=(+/-)2^s where s is 0 or 1.
Definition: Unity is singular when GCD[n,y]<>1.

Examples

			a(1)=6 because unity of quadratic field  Q(6) is 5+2*Sqrt[6] and GCD[2,6]=2 <>1.
		

Crossrefs

Programs

  • Mathematica
    cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[cr, n]]], {n, 2, 330}]; cr (*Artur Jasinski*)

A197128 Nonsquare positive integers n such that the fundamental unit of quadratic field Q(sqrt(n))is not singular.

Original entry on oeis.org

2, 3, 5, 7, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 29, 31, 32, 33, 35, 37, 39, 40, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 63, 65, 67, 68, 71, 72, 73, 74, 75, 76, 77, 79, 80, 82, 83, 84, 85, 88, 89, 90, 91, 92
Offset: 1

Views

Author

Artur Jasinski, Oct 10 2011

Keywords

Comments

x^2+n*y^2=(+/-)2^s where s is 0 or 1.
Definition: Unity is singular when GCD[n,y]<>1.

Crossrefs

Programs

  • Mathematica
    cr = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, AppendTo[cr, n]]], {n, 2, 330}]; cr

A197170 Smallest k such that the fundamental unit (x+y*w) or (x+y*w)/2 of the real quadratic field Q(sqrt(k)) obeys gcd(k,y)=n.

Original entry on oeis.org

6, 69, 248, 115, 78, 511, 1016, 603, 70, 385, 3432, 793, 238, 2655, 14224, 1241, 3186, 703, 3980, 9177, 154, 736, 456, 1825, 3172, 13959, 2884, 319, 1110, 4619, 7136, 10659, 7174, 10255, 44856, 7067, 2926, 16185, 54280, 779, 7602, 10879, 22088, 10215, 46
Offset: 2

Views

Author

Artur Jasinski, Oct 11 2011

Keywords

Comments

Conjecture: For every n such a quadratic field with minimum k exists.

Examples

			For n=2 the unit is 2*w-5 with k=6.
For n=3 the unit is (3*w+25)/2 with k=69.
For n=4 the unit is (4*w-63) with k=248.
For n=5 the unit is 105*w-1126 with k=115.
For n=7 the unit is 185290497*w-4188548960 with k=511 (and this x and y appear in A041976 and A041977).
		

Crossrefs

Programs

  • Mathematica
    cr = {}; ck = {}; Do[If[IntegerQ[Sqrt[n]], , kk = NumberFieldFundamentalUnits[Sqrt[n]]; d1 = kk[[1]][[2]][[1]]; d2 = kk[[1]][[1]] kk[[1]][[2]][[2]]; d4 = Numerator[d2/Sqrt[n]]; If[GCD[d4, n] == 1, , AppendTo[ck, GCD[d4, n]];  AppendTo[cr, n]]], {n, 2, 200000}]; aa = {}; Do[AppendTo[aa, cr[[First[Position[ck, n]][[1]]]]], {n, 2, 99}]; aa

Formula

k = A197127(m) where m is the smallest m such that A197169(m)=n.

A172001 Nonsquare positive integers n such that Pell equation y^2 - n*x^2 = -1 has rational solutions but the norm of fundamental unit of quadratic field Q(sqrt(n)) is 1.

Original entry on oeis.org

34, 136, 146, 178, 194, 205, 221, 305, 306, 377, 386, 410, 466, 482, 505, 514, 544, 545, 562, 584, 674, 689, 706, 712, 745, 776, 793, 802, 820, 850, 866, 884, 890, 898, 905, 1154, 1186, 1202, 1205, 1220, 1224, 1234, 1282, 1314, 1345, 1346, 1394, 1405, 1469
Offset: 1

Views

Author

Max Alekseyev, Jan 21 2010

Keywords

Comments

If the fundamental unit y0 + x0*sqrt(n) of Q(sqrt(n)) has norm -1, then (x0,y0) represents a rational solution to Pell equation y^2 - n*x^2 = -1. For n in this sequence, rational solutions exist but not delivered by the fundamental unit.

Crossrefs

Set difference of A000415 and its subsequence A172000.
Set difference of A087643 and its subsequence A022544.
Squarefree terms form A031398.
Odd terms form A249052.

Formula

A positive integer n is in this sequence iff its squarefree core A007913(n) belongs to A031398.

Extensions

Edited by Max Alekseyev, Mar 09 2010

A227939 Values of n such that the equation x^2 - 2*n*y^2 = n has integer solutions.

Original entry on oeis.org

1, 3, 4, 9, 11, 12, 16, 19, 25, 27, 33, 36, 43, 44, 48, 49, 51, 57, 59, 64, 67, 73, 75, 76, 81, 83, 89, 99, 100, 107, 108, 121, 123, 129, 131, 132, 139, 144, 147, 163, 169, 171, 172, 176, 177, 179, 187, 192
Offset: 1

Views

Author

Colin Barker, Oct 07 2013

Keywords

Examples

			59 appears in the sequence because the equation x^2 - 118*y^2 = 59 has integer solutions.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[200],Length[FullSimplify[Solve[x^2-2*#*y^2==#,{x,y},Integers]/.C[1]->1]]>0&] (* Vaclav Kotesovec, Oct 08 2013 *)
Showing 1-10 of 18 results. Next