A003854
Order of simple Chevalley group D_8(q), q = prime power.
Original entry on oeis.org
911666827031785075278550369566720000, 393736985584514548835738283681336315795223487793070080000, 1649493899207759406688161287839326786813727965837588934265143296000000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 8], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003850
Order of simple Chevalley group D_4(q), q = prime power.
Original entry on oeis.org
174182400, 4952179814400, 67010895544320000, 8911539000000000000, 112554991177798901760000, 19031213036231093492121600, 129182006871144805294080000, 35749625435272978955066880000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 4], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003851
Order of simple Chevalley group D_5(q), q = prime power.
Original entry on oeis.org
23499295948800, 1289512799941305139200, 1154606796534757164318720000, 6807663884896875000000000000000, 52386144472825139642572263782154240000, 42863636354909175368011800612065142374400, 2154683673871373733440812330742751559680000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 5], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003852
Order of simple Chevalley group D_6(q), q = prime power.
Original entry on oeis.org
50027557148216524800, 6762844700608770238252960972800, 5081732431326820541485324550799360000000, 3246978048053003424316406250000000000000000000, 14630778277213500974314928221817819519899234908241920000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 6], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003853
Order of simple Chevalley group D_7(q), q = prime power.
Original entry on oeis.org
1691555775522928280469504000, 11470635634813395742481912276441576767488000, 5722569627753465177061732369386833143098255605760000000, 967724409898859060146424426078796386718750000000000000000000000, 39242041156758982253792290541798244252619818128923898602839750047956992000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 7], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
Showing 1-5 of 5 results.