cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A003854 Order of simple Chevalley group D_8(q), q = prime power.

Original entry on oeis.org

911666827031785075278550369566720000, 393736985584514548835738283681336315795223487793070080000, 1649493899207759406688161287839326786813727965837588934265143296000000000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 8], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = d(A000961(n+1),8) where d(q,n) is defined in A003837. - Sean A. Irvine, Sep 17 2015

Extensions

More terms from Sean A. Irvine, Sep 17 2015

A003848 Order of (usually) simple Chevalley group D_2(q), q = prime power.

Original entry on oeis.org

36, 144, 3600, 3600, 28224, 254016, 129600, 435600, 1192464, 16646400, 5992704, 11696400, 36869184, 60840000, 96589584, 148352400, 221414400, 1071645696, 640494864, 1186113600, 1578631824, 2692364544, 3457440000, 5537145744, 10539075600, 12873171600, 68685926400
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 2], {q, Select[Range[50], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = d(A000961(n+1),2) where d(q,n) is defined in A003837. - Sean A. Irvine, Sep 17 2015

A003850 Order of simple Chevalley group D_4(q), q = prime power.

Original entry on oeis.org

174182400, 4952179814400, 67010895544320000, 8911539000000000000, 112554991177798901760000, 19031213036231093492121600, 129182006871144805294080000, 35749625435272978955066880000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 4], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = d(A000961(n+1),4) where d(q,n) is defined in A003837. - Sean A. Irvine, Sep 17 2015

A003851 Order of simple Chevalley group D_5(q), q = prime power.

Original entry on oeis.org

23499295948800, 1289512799941305139200, 1154606796534757164318720000, 6807663884896875000000000000000, 52386144472825139642572263782154240000, 42863636354909175368011800612065142374400, 2154683673871373733440812330742751559680000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 5], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = d(A000961(n+1),5) where d(q,n) is defined in A003837. - Sean A. Irvine, Sep 17 2015

Extensions

More terms from Sean A. Irvine, Sep 17 2015

A003853 Order of simple Chevalley group D_7(q), q = prime power.

Original entry on oeis.org

1691555775522928280469504000, 11470635634813395742481912276441576767488000, 5722569627753465177061732369386833143098255605760000000, 967724409898859060146424426078796386718750000000000000000000000, 39242041156758982253792290541798244252619818128923898602839750047956992000000
Offset: 1

Views

Author

Keywords

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
  • H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.

Crossrefs

Programs

  • Mathematica
    d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 7], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)

Formula

a(n) = d(A000961(n+1),7) where d(q,n) is defined in A003837. - Sean A. Irvine, Sep 17 2015

Extensions

More terms from Sean A. Irvine, Sep 17 2015
Showing 1-5 of 5 results.