A003848
Order of (usually) simple Chevalley group D_2(q), q = prime power.
Original entry on oeis.org
36, 144, 3600, 3600, 28224, 254016, 129600, 435600, 1192464, 16646400, 5992704, 11696400, 36869184, 60840000, 96589584, 148352400, 221414400, 1071645696, 640494864, 1186113600, 1578631824, 2692364544, 3457440000, 5537145744, 10539075600, 12873171600, 68685926400
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 2], {q, Select[Range[50], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003850
Order of simple Chevalley group D_4(q), q = prime power.
Original entry on oeis.org
174182400, 4952179814400, 67010895544320000, 8911539000000000000, 112554991177798901760000, 19031213036231093492121600, 129182006871144805294080000, 35749625435272978955066880000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 4], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003851
Order of simple Chevalley group D_5(q), q = prime power.
Original entry on oeis.org
23499295948800, 1289512799941305139200, 1154606796534757164318720000, 6807663884896875000000000000000, 52386144472825139642572263782154240000, 42863636354909175368011800612065142374400, 2154683673871373733440812330742751559680000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 5], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003852
Order of simple Chevalley group D_6(q), q = prime power.
Original entry on oeis.org
50027557148216524800, 6762844700608770238252960972800, 5081732431326820541485324550799360000000, 3246978048053003424316406250000000000000000000, 14630778277213500974314928221817819519899234908241920000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 6], {q, Select[Range[20], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
A003853
Order of simple Chevalley group D_7(q), q = prime power.
Original entry on oeis.org
1691555775522928280469504000, 11470635634813395742481912276441576767488000, 5722569627753465177061732369386833143098255605760000000, 967724409898859060146424426078796386718750000000000000000000000, 39242041156758982253792290541798244252619818128923898602839750047956992000000
Offset: 1
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
- H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
-
d[q_, n_] := q^(n*(n-1)) * (q^n-1) * Product[q^(2*k) - 1, {k, 1, n-1}] / GCD[4, q^n-1]; Table[d[q, 7], {q, Select[Range[10], PrimePowerQ]}] (* Amiram Eldar, Jun 24 2025 *)
Showing 1-5 of 5 results.