cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A003040 Highest degree of an irreducible representation of symmetric group S_n of degree n.

Original entry on oeis.org

1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000, 2474843571200, 12760912164000, 57424104738000, 295284192952320
Offset: 1

Views

Author

Keywords

Comments

Highest number of standard tableaux of the Ferrers diagrams of the partitions of n. Example: a(4) = 3 because to the partitions 4, 31, 22, 211, and 1111 there correspond 1, 3, 2, 3, and 1 standard tableaux, respectively. - Emeric Deutsch, Oct 02 2015

Examples

			a(5) = 6 because the degrees for S_5 are 1,1,4,4,5,5,6.
		

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
  • D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups. 2nd ed., Oxford University Press, 1950, p. 265.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A117500 gives the corresponding partitions of n.

Programs

  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1 &, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    a[n_] := a[n] = g[n, n, {}] // Max;
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 50}] (* Jean-François Alcover, Sep 23 2024, after Alois P. Heinz in A060240 *)
  • Sage
    def A003040(n):
        res = 1
        for P in Partitions(n):
            res = max(res, P.dimension())
        return res
    # Eric M. Schmidt, May 07 2013

Extensions

Entry revised and extended by N. J. A. Sloane, Apr 28 2006
a(29) corrected by Eric M. Schmidt, May 07 2013

A003869 Degrees of irreducible representations of symmetric group S_5.

Original entry on oeis.org

1, 1, 4, 4, 5, 5, 6
Offset: 1

Views

Author

Keywords

Comments

All 7 terms of this finite sequence are shown.

References

  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Row n=5 of A060240.

Programs

  • GAP
    A003869 := List(Irr(CharacterTable("S5")), chi->chi[1]);; Sort(A003869); # Eric M. Schmidt, Jul 18 2012
  • Magma
    // See A003875 for Magma code
    
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@ Table[g[n - i*j, i - 1, Join[l, Array[i &, j]]], {j, 0, n/i}]]];
    T[n_] := g[n, n, {}];
    Sort[T[5]] (* Jean-François Alcover, Sep 22 2024, after Alois P. Heinz in A060240 *)

A093786 Hook products of all partitions of 8.

Original entry on oeis.org

448, 576, 576, 630, 630, 720, 720, 960, 1152, 1152, 1440, 1440, 1920, 1920, 2016, 2016, 2880, 2880, 5760, 5760, 40320, 40320
Offset: 1

Views

Author

Emeric Deutsch, May 17 2004

Keywords

Crossrefs

Row n=8 of A093784.

Programs

  • Maple
    H:=proc(pa) local F,j,p,Q,i,col,a,A: F:=proc(x) local i, ct: ct:=0: for i from 1 to nops(x) do if x[i]>1 then ct:=ct+1 else fi od: ct; end: for j from 1 to nops(pa) do p[1][j]:=pa[j] od: Q[1]:=[seq(p[1][j],j=1..nops(pa))]: for i from 2 to pa[1] do for j from 1 to F(Q[i-1]) do p[i][j]:=Q[i-1][j]-1 od: Q[i]:=[seq(p[i][j],j=1..F(Q[i-1]))] od: for i from 1 to pa[1] do col[i]:=[seq(Q[i][j]+nops(Q[i])-j,j=1..nops(Q[i]))] od: a:=proc(i,j) if i<=nops(Q[j]) and j<=pa[1] then Q[j][i]+nops(Q[j])-i else 1 fi end: A:=matrix(nops(pa),pa[1],a): product(product(A[m,n],n=1..pa[1]),m=1..nops(pa)); end: with(combinat): rev:=proc(a) [seq(a[nops(a)+1-i],i=1..nops(a))] end: sort([seq(H(rev(partition(8)[q])),q=1..numbpart(8))]);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Total[l]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i + 1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
    g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]], If[i < 1, 0, Flatten@Table[g[n - i*j, i - 1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
    T[n_] := g[n, n, {}];
    Sort[8!/T[8]] (* Jean-François Alcover, Aug 12 2024, after Alois P. Heinz in A060240 *)

Formula

a(n) = 8!/A003872(23-n).
Showing 1-3 of 3 results.