A003954 Expansion of g.f.: (1+x)/(1-11*x).
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095212, 3423740047332, 37661140520652, 414272545727172, 4556998002998892, 50126978032987812, 551396758362865932, 6065364341991525252, 66719007761906777772, 733909085380974555492
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 313.
- Index to divisibility sequences.
- Index entries for linear recurrences with constant coefficients, signature (11).
- Index entries for sequences related to trees.
Programs
-
GAP
Concatenation([1], List([1..20], n-> 12*11^(n-1) )); # G. C. Greubel, Sep 23 2019
-
Magma
[1] cat [12*11^(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 11 2012
-
Maple
k:=12; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
-
Mathematica
Join[{1}, 12*11^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *) CoefficientList[Series[(1+x)/(1-11x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)
-
PARI
a(n)=12*11^n\11 \\ Charles R Greathouse IV, Aug 14 2015
-
Sage
[1]+[12*11^(n-1) for n in (1..20)] # G. C. Greubel, Sep 23 2019
Formula
a(n) = Sum_{k=0..n} A029653(n,k)*x^k for x = 10. - Philippe Deléham, Jul 10 2005
G.f.: (1+x)/(1-11*x). The Hankel transform of this sequence is [1,-12,0,0,0,0,0,0,0,...]. - Philippe Deléham, Nov 21 2007
a(0) = 1; for n>0, a(n) = 12*11^(n-1). - Vincenzo Librandi, Nov 18 2010
a(0) = 1, a(1)=12, a(n) = 11*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (12*exp(11*x) - 1)/11. - Elmo R. Oliveira, Mar 24 2025
Extensions
Edited by N. J. A. Sloane, Dec 04 2009
Comments