cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 43 results. Next

A212112 Numerators of convergents to the Dottie number, A003957.

Original entry on oeis.org

0, 1, 2, 3, 14, 17, 694, 711, 7093, 29083, 65259, 94342, 1480389, 3055120, 38141829, 41196949, 903277758, 944474707, 16959347777, 882830559111, 2665451025110, 3548281584221, 23955140530436
Offset: 0

Views

Author

Ben Branman, May 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    z = FindRoot[Cos[x] == x, {x, 0, 1}, WorkingPrecision -> 10000][[1, -1]]; Numerator[Convergents[z, 100]]

A212113 Denominators of convergents to the Dottie number, A003957.

Original entry on oeis.org

1, 1, 3, 4, 19, 23, 939, 962, 9597, 39350, 88297, 127647, 2003002, 4133651, 51606814, 55740465, 1222156579, 1277897044, 22946406327, 1194491026048, 3606419484471, 4800910510519, 32411882547585
Offset: 0

Views

Author

Ben Branman, May 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    z = FindRoot[Cos[x] == x, {x, 0, 1}, WorkingPrecision -> 10000][[1, -1]]; Denominator[Convergents[z, 100]]

A182503 Engel expansion of the Dottie number, A003957.

Original entry on oeis.org

2, 3, 3, 4, 5, 15, 17, 66, 196, 233, 284, 375, 1613, 2131, 3574, 14122, 24171, 49097, 56871, 69361, 193406, 243145, 289951, 682749, 14501588, 21191773, 121635191, 810759781, 1292785381, 136110231377, 294401497761
Offset: 1

Views

Author

Ben Branman, May 02 2012

Keywords

Comments

Dottie number = 1/2 + 1/2/3 + 1/2/3/3 + 1/2/3/3/4 + 1/2/3/3/4/5 + 1/2/3/3/4/5/15 +...

Crossrefs

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]} &, {Ceiling[1/(A - Floor[A])], A - Floor[A]}, n - 1]]; z = FindRoot[x == Cos[x], {x, 1}, WorkingPrecision -> 10000][[1, -1]]; EngelExp[z, 30]

A330119 Degrees-based analog to the Dottie number (A003957).

Original entry on oeis.org

9, 9, 9, 8, 4, 7, 7, 4, 1, 5, 3, 1, 0, 8, 8, 1, 1, 2, 9, 5, 9, 8, 1, 0, 7, 6, 8, 6, 7, 9, 7, 9, 9, 7, 9, 9, 1, 8, 1, 8, 7, 2, 5, 8, 6, 1, 5, 2, 7, 7, 5, 8, 8, 3, 7, 5, 4, 6, 6, 9, 8, 6, 1, 1, 4, 2, 9, 5, 3, 8, 5, 3, 3, 1, 2, 1, 6, 3, 6, 3, 5, 5, 7, 8, 9, 5, 8
Offset: 0

Views

Author

Jon E. Schoenfield, Dec 01 2019

Keywords

Comments

Using a calculator that has a cosine button and is set to calculate the values of trigonometric functions with the angles measured in degrees, start with any number and repeatedly hit the cosine button; the result will always converge to this value.
(If the calculator is set to calculate the values of trigonometric functions with the angles measured in radians rather than degrees, repeatedly hitting the cosine button will result in the value given at A003957.)

Examples

			0.9998477415310881129...
		

Crossrefs

Cf. A003957.

Programs

  • PARI
    solve(x=0, 1, cos(Pi*x/180)-x) \\ Michel Marcus, Dec 02 2019

A182101 Random walk determined by the binary digits of the Dottie number, A003957.

Original entry on oeis.org

0, 1, 0, 1, 2, 3, 4, 3, 4, 3, 2, 3, 4, 3, 4, 3, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 7, 8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 5, 6, 5, 6, 7, 6, 7, 8, 7, 8, 9, 10, 9, 8, 9, 8, 9, 8, 9, 10, 9, 10, 9, 10
Offset: 0

Views

Author

Ben Branman, Apr 11 2012

Keywords

Comments

Start at a(0)=0. Each 0 in the binary expansion corresponds to a step of -1, while a 1 corresponds to a step of +1.
Partial sums of the sequence 2*A121967(n)-1.
The first time a(n) is negative is n=93.

Examples

			a(5)=3, and the sixth bit of the Dottie number is 1, so a(6)=4.
On the other hand, the seventh bit of the Dottie number is 0, so a(7)=3.
		

Crossrefs

Cf. A003957, A121967, A166006 (analogous sequence for Pi).

Programs

  • Mathematica
    Accumulate[RealDigits[FindRoot[Cos[x] == x, {x, 0}, WorkingPrecision -> 1000][[1, -1]], 2][[1]] 2 - 1]

A100547 Decimal expansion of -cos(2^19*r) where r ~ 0.739085 is the root of cos x = x (A003957).

Original entry on oeis.org

9, 9, 9, 9, 9, 3, 3, 3, 3, 7, 0, 3, 8, 4, 4, 4, 4, 4, 7, 2, 8, 6, 8, 6, 8, 4, 5, 7, 8, 8, 7, 8, 0, 6, 0, 9, 0, 1, 2, 8, 0, 8, 6, 0, 1, 6, 4, 9, 5, 9, 3, 8, 2, 2, 0, 1, 4, 3, 7, 7, 8, 1, 4, 6, 6, 6, 8, 9, 9, 9, 9, 7, 4, 4, 5, 1, 3, 9, 8, 3, 4, 8, 5, 1, 4, 3, 5, 8, 0, 7, 1, 7, 6, 1, 4, 6, 8, 6, 8, 8, 9, 8, 6, 8, 0
Offset: 0

Views

Author

Gerald McGarvey, Jan 01 2005

Keywords

Examples

			.999993333703844444728686845788780609012808601649593822014377814666899997...
		

Crossrefs

Cf. A003957.

Programs

  • Mathematica
    r = FindRoot[Cos[x] == x, {x, 1.}, WorkingPrecision -> 1000][[1, 2]];
    RealDigits[Cos[2^19 r]][[1]] (* Ben Branman, Aug 19 2012 *)

A180619 Consider the function f(n)=1/(Abs(n-r)), where r is the Dottie number, A003957. Let g(n) be defined by the recursion g(n)=Cos(g(n-1)),g(0)=1. Now, a(n)=floor(f(g(n))).

Original entry on oeis.org

3, 5, 8, 11, 18, 26, 40, 58, 88, 130, 194, 287, 427, 633, 941, 1396, 2074, 3078, 4571, 6785, 10073, 14954, 22200, 32957, 48926, 72632, 107826, 160071, 237631, 352771, 523702, 777453, 1154157, 1713385, 2543579, 3776029, 5605645, 8321770, 12353952
Offset: 0

Views

Author

Ben Branman, Sep 12 2010

Keywords

Comments

This sequence gives a sense of the rate of convergence to the Dottie Number.
Because higher values of a(n) means that g(n) is converging to the Dottie number, quick convergence means a high rate of increase for a(n).
This can be compared to other methods for approximation the Dottie number, by defining an analogous sequence.
This gives us an algorithm to measure the rate of convergence, for ANY function that convergence to a constant.
a(n) is asymptotically approaches an exponential regression.

Examples

			For n=3, g(3)=cos(cos(cos(1)))
f(g(3))~=11.7931005 So a(3)=floor(11.7931005)=11.
		

A369186 The denominators of a series that converges to the Dottie Number (A003957).

Original entry on oeis.org

1, 3, 12, 260, 5720, 314248, 17255072, 1769058016, 181357735680, 29880655637760, 4923158441956352, 1189676108826729472, 287484053261423565824, 95784714773484796761088, 31913810779214031287095296, 2804341960426298188743438336, 1232120770958699233546743119872
Offset: 1

Views

Author

Raul Prisacariu, Jan 15 2024

Keywords

Comments

Whittaker's root series formula is applied to 1 - x - x^2/2! + x^4/4! - x^6/6! + ..., which is the Taylor expansion of cos(x) - x. The following infinite series for the Dottie number (D) is obtained: D = 1/1 - 1/3 + 1/12 - 3/260 + 1/5720 + 205/314248 - 4439/17255072 ... . The sequence is formed by the denominators of the series.

Examples

			a(1) is the denominator of -1/-1 = 1/1.
a(2) is the denominator of simplified -(-1/2!)/(-1* det ToeplitzMatrix((-1,1),(-1,-1/2!))) = (1/2)/(-3/2) = -1/3.
a(3) is the denominator of the simplified -det ToeplitzMatrix((-1/2!,-1),(-1/2!,0))/(det ToeplitzMatrix((-1,1),(-1,-1/2!))*det ToeplitzMatrix((-1,1,0),(-1,-1/2!,0))) = -(1/4)/((3/2)*-2) = 1/12.
		

Crossrefs

Cf. A003957.

Formula

a(1)=1;
for n > 1, a(n) is the denominator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=1, c(1)=-1, c(2)=-1/2!, c(3)=0, c(4)=1/4!, c(5)=0, c(6)=-1/6!, and c(n) is the coefficient of x^n in the Taylor expansion of cos(x)-x.

Extensions

a(8)-a(17) from Chai Wah Wu, Feb 10 2024

A369187 The numerators of a series that converges to the Dottie Number (A003957).

Original entry on oeis.org

1, -1, 1, -3, 1, 205, -4439, 111021, -1724351, 2074717, 2567577481, -246042951203, 14444487376705, -726562139423955, 1473171168838825, 1178164765176836393, -204468301714665778099, 138848947223110087743421, -11701779801284441802592247, 7774256876827576332115737
Offset: 1

Views

Author

Raul Prisacariu, Jan 15 2024

Keywords

Comments

Whittaker's root series formula is applied to 1 - x - x^2/2! + x^4/4! - x^6/6! + ..., which is the Taylor expansion of cos(x) - x. The following infinite series for the Dottie number (D) is obtained: D = 1/1 - 1/3 + 1/12 - 3/260 + 1/5720 + 205/314248 - 4439/17255072 ... . The sequence is formed by the numerators of the series.

Examples

			a(1) is the numerator of -1/-1 = 1/1.
a(2) is the numerator of simplified -(-1/2!)/(-1* det ToeplitzMatrix((-1,1),(-1,-1/2!))) = (1/2)/(-3/2) = -1/3.
a(3) is the numerator of the simplified -det ToeplitzMatrix((-1/2!,-1),(-1/2!,0))/(det ToeplitzMatrix((-1,1),(-1,-1/2!))*det ToeplitzMatrix((-1,1,0),(-1,-1/2!,0))) = -(1/4)/((3/2)*-2) = 1/12.
		

Crossrefs

Cf. A003957.

Formula

a(1) = 1; for n > 1, a(n) is the numerator of the simplified fraction -det ToeplitzMatrix((c(2),c(1),c(0),0,0,...,0),(c(2),c(3),c(4),...,c(n+1)))/(det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n)))*det ToeplitzMatrix((c(1),c(0),0,...,0),(c(1),c(2),c(3),...,c(n+1)))), where c(0)=1, c(1)=-1, c(2)=-1/2!, c(3)=0, c(4)=1/4!, c(5)=0, c(6)=-1/6!, and c(n) is the coefficient of x^n in the Taylor expansion of cos(x)-x.

Extensions

a(8)-a(20) from Chai Wah Wu, Feb 10 2024

A199597 Decimal expansion of x > 0 satisfying x^2 + x*cos(x) = sin(x).

Original entry on oeis.org

1, 1, 8, 8, 1, 8, 5, 1, 3, 4, 4, 5, 1, 4, 3, 8, 8, 0, 3, 2, 1, 7, 8, 1, 0, 9, 7, 2, 9, 0, 7, 6, 5, 2, 5, 9, 7, 3, 8, 3, 2, 4, 2, 5, 6, 1, 2, 8, 4, 1, 4, 7, 1, 9, 4, 1, 8, 2, 3, 9, 5, 2, 8, 3, 2, 3, 4, 1, 8, 6, 0, 9, 9, 1, 3, 4, 2, 2, 9, 6, 0, 3, 4, 2, 6, 1, 8, 0, 9, 6, 9, 1, 8, 3, 4, 8, 8, 4, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 08 2011

Keywords

Comments

For many choices of a,b,c, there is exactly one x>0 satisfying a*x^2+b*x*cos(x)=c*sin(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 1.... 2.... A199597
1.... 1.... 3.... A199598
1.... 1.... 4.... A199599
1.... 2.... 1.... A199600
1.... 2.... 3.... A199601
1.... 2.... 4.... A199602
1.... 3.... 0.... A199603, A199604
1.... 3.... 1.... A199605, A199606
1.... 3.... 2.... A199607, A199608
1.... 3.... 3.... A199609, A199610
1.... 4.... 0.... A199611, A199612
1.... 4.... 1.... A199613, A199614
1.... 4.... 2.... A199615, A199616
1.... 4.... 3.... A199617, A199618
1.... 4.... 4.... A199619, A199620
2.... 1.... 0.... A199621
2.... 1.... 2.... A199622
2.... 1.... 3.... A199623
2.... 1.... 4.... A199624
2.... 2.... 1.... A199625
2.... 2.... 3.... A199661
3.... 1.... 0.... A199662
3.... 1.... 2.... A199663
3.... 1.... 3.... A199664
3.... 1.... 4.... A199665
3.... 2.... 0.... A199666
3.... 2.... 1.... A199667
3.... 2.... 3.... A199668
3.... 2.... 4.... A199669
1... -1.... 0.... A003957
1... -1.... 1.... A199722
1... -1.... 2.... A199721
1... -1.... 3.... A199720
1... -1.... 4.... A199719
1... -2.... 1.... A199726
1... -2.... 2.... A199725
1... -2.... 3.... A199724
1... -2.... 4.... A199723
1... -3.... 1.... A199730
1... -3.... 2.... A199729
1... -3.... 3.... A199728
1... -3.... 4.... A199727
1... -4.... 1.... A199737. A199738
1... -4.... 2.... A199735, A199736
1... -4.... 3.... A199733, A199734
1... -4.... 4.... A199731. A199732
2... -1.... 1.... A199742
2... -1.... 2.... A199741
2... -1.... 3.... A199740
2... -1.... 4.... A199739
2... -2.... 1.... A199776
2... -2.... 3.... A199775
2... -3.... 1.... A199780
2... -3.... 2.... A199779
2... -3.... 3.... A199778
2... -3.... 4.... A199777
2... -4.... 1.... A199782
2... -4.... 3.... A199781
3... -4.... 1.... A199786
3... -4.... 2.... A199785
3... -4.... 3.... A199784
3... -4.... 4.... A199783
3... -3.... 1.... A199789
3... -3.... 2.... A199788
3... -3.... 4.... A199787
3... -2.... 1.... A199793
3... -2.... 2.... A199792
3... -2.... 3.... A199791
3... -2.... 4.... A199790
3... -1.... 1.... A199797
3... -1.... 2.... A199796
3... -1.... 3.... A199795
3... -1.... 4.... A199794
4... -4.... 1.... A199873
4... -4.... 3.... A199872
4... -3.... 1.... A199871
4... -3.... 2.... A199870
4... -3.... 3.... A199869
4... -3.... 4.... A199868
4... -2.... 1.... A199867
4... -2.... 3.... A199866
4... -1.... 1.... A199865
4... -1.... 2.... A199864
4... -1.... 3.... A199863
4... -1.... 4.... A199862
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A199597, take f(x,u,v)=x^2+u*x*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.1881851344514388032178109729076525973...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A199597 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*x*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -Pi, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.18, 1.19}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199597 *)
    (* Program 2: impl. surf. x^2+u*x*cos(x)=v*sin(x) *)
    f[{x_, u_, v_}] := x^2 + u*x*Cos[x] - v*Sin[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, .5, 3}]}, {u, 0, 2}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A199597 *)

Extensions

Edited by Georg Fischer, Aug 03 2021
Showing 1-10 of 43 results. Next