cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A003982 Table read by rows: 1 if x = y, 0 otherwise, where (x,y) = (0,0),(0,1),(1,0),(0,2),(1,1),(2,0),...

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Also called the delta function.
From Clark Kimberling, Feb 07 2011: (Start)
In rectangular format, the infinite identity matrix and the weight array of A003783(n,k)=min{n,k}; in the accumulation chain
... < A003982 < A003783 < A115262 < A185957 < ... . See A144112 for definitions of weight array and accumulation array. (End)

Examples

			Table begins
  1;
  0, 0;
  0, 1, 0;
  0, 0, 0, 0;
  0, 0, 1, 0, 0;
  ....
Northwest corner when formatted as a rectangular array:
  1 0 0 0 0 0 0 0
  0 1 0 0 0 0 0 0
  0 0 1 0 0 0 0 0
  0 0 0 1 0 0 0 0
  0 0 0 0 1 0 0 0
		

Crossrefs

Characteristic function of A001844. Antidiagonal sums and main diagonal is A000012.
Cf. also A286100.

Programs

  • Mathematica
    f[n_,k_]:=0; f[n_,n_]:=1;
    TableForm[Table[f[n,k],{n,1,10},{k,1,10}]] (* array *)
    Table[f[n-k+1,k],{n,10},{k,n,1,-1}]//Flatten (*sequence *)
    Table[Join[{1},Table[0,4n-1]],{n,10}]//Flatten (* Harvey P. Dale, Dec 21 2016 *)
  • PARI
    {a(n) = issquare(2*n + 1)}; /* Michael Somos, Apr 13 2005 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^8 + A)^2 / eta(x^4 + A), n))};
    
  • PARI
    A(i,j)=i==j

Formula

n-th 1 is followed by 4*n-1 0's. In the sequence with flattened indices, the 1's are at positions listed in A046092.
G.f.: 1/(1 - x*y). E.g.f.: exp(x*y).
Considered as a linear sequence, expansion of q^(-1/2)*eta(q^8)^2/eta(q^4) in powers of q. If A(x) is the g.f., then B(a) = (q*A(a^2))^2 satisfies 0 = f(B(q), B(q^2), B(q^4)) where f(u, v, w) = u^2*w - v^3 - 4*v*w^2. Also, given g.f. A(x), then B(q) = q*A(q^2) satisfies 0 = f(B(q), B(q^2), B(q^3), B(q^6)) where f(u1, u2, u3, u6) = u1*u2^2*u6 - u1*u6^3 - u3^3*u2. - Michael Somos, Apr 13 2005
a(n) = b(2*n + 1) where b(n) is multiplicative and b(2^e) = 0^e, b(p^e) = (1 + (-1)^e)/2 if p>2. - Michael Somos, Jun 06 2005
a(n) = floor(sqrt(2*n+1)) - floor(sqrt(2*n)). - Ridouane Oudra, Oct 09 2020