cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004014 Norms of vectors in the b.c.c. lattice.

Original entry on oeis.org

0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 96, 99, 100, 104, 107, 108, 115, 116, 120, 123, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 160, 163, 164, 168
Offset: 0

Views

Author

Keywords

Comments

Integers such that A004013(n) is nonzero. - Michael Somos, Jul 28 2014
A subsequence of A047458. The complement seems to be 4*A004215. - Andrey Zabolotskiy, Nov 11 2021
From Mohammed Yaseen, Nov 06 2022: (Start)
These are numbers of the form x^2+y^2+z^2 where x, y and z are either all even (including zero) or all odd.
The selection rule for the planes with Miller indices (hkl) to undergo X-ray diffraction in an f.c.c. lattice is h^2+k^2+l^2 = N where N is a term of this sequence. See A000378 for simple cubic lattice. (End)

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116. (Chapter 4 section 6.7)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Union of A034045 and A017101. - Mohammed Yaseen, Nov 06 2022

Programs

  • Maple
    f:= JacobiTheta2(0,z^4)^3+JacobiTheta3(0,z^4)^3:
    S:= series(f,z,1001):
    select(t -> coeff(S,z,t) <> 0, [$0..1000]); # Robert Israel, Oct 18 2015
  • Mathematica
    f = EllipticTheta[2, 0, z^4]^3 + EllipticTheta[3, 0, z^4]^3; S = f + O[z]^200; Flatten[Position[CoefficientList[S, z], ?Positive] - 1] (* _Jean-François Alcover, Oct 23 2016, after Robert Israel *)

Extensions

More terms from Sean A. Irvine, Oct 17 2015