A004014 Norms of vectors in the b.c.c. lattice.
0, 3, 4, 8, 11, 12, 16, 19, 20, 24, 27, 32, 35, 36, 40, 43, 44, 48, 51, 52, 56, 59, 64, 67, 68, 72, 75, 76, 80, 83, 84, 88, 91, 96, 99, 100, 104, 107, 108, 115, 116, 120, 123, 128, 131, 132, 136, 139, 140, 144, 147, 148, 152, 155, 160, 163, 164, 168
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 116. (Chapter 4 section 6.7)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
- G. Nebe and N. J. A. Sloane, Home page for this lattice
- Index entries for sequences related to b.c.c. lattice
Crossrefs
Programs
-
Maple
f:= JacobiTheta2(0,z^4)^3+JacobiTheta3(0,z^4)^3: S:= series(f,z,1001): select(t -> coeff(S,z,t) <> 0, [$0..1000]); # Robert Israel, Oct 18 2015
-
Mathematica
f = EllipticTheta[2, 0, z^4]^3 + EllipticTheta[3, 0, z^4]^3; S = f + O[z]^200; Flatten[Position[CoefficientList[S, z], ?Positive] - 1] (* _Jean-François Alcover, Oct 23 2016, after Robert Israel *)
Extensions
More terms from Sean A. Irvine, Oct 17 2015
Comments