cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A107657 Coefficients of 12th root of theta series of lattice in A004046.

Original entry on oeis.org

1, 0, 0, 2184, 44226, 530712, -22289904, -1041080040, -23414482728, 86664734520, 22704271546320, 824932708688088, 10338270616438674, -363177176817506688, -24534229526034608016, -614775613733783853624, -526997882017733986314, 591470477348411755418688, 24257417213770154760619728, 384176112414487265101313448
Offset: 0

Views

Author

N. J. A. Sloane and Michael Somos, Jun 07 2005

Keywords

Crossrefs

Cf. A004046.

Programs

  • Mathematica
    terms = 20; QP = QPochhammer; Q9 = (1 + (9*q*QP[q^9]^3)/QP[q]^3); s = (1/(3^(1/4)*QP[q^3]))*QP[q]^3*(-8 + 16*Q9^3 + 64*Q9^6 - 72*Q9^9 + 27*Q9^12)^(1/12) + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 06 2017, after Michael Somos *)

A034622 Duplicate of A004046.

Original entry on oeis.org

1, 0, 0, 26208, 530712, 6368544, 47331648, 256864608, 1116087336
Offset: 0

Views

Author

Keywords

A004010 Theta series of 12-dimensional Coxeter-Todd lattice K_12.

Original entry on oeis.org

1, 0, 756, 4032, 20412, 60480, 139860, 326592, 652428, 1020096, 2000376, 3132864, 4445532, 7185024, 10747296, 13148352, 21003948, 27506304, 33724404, 48009024, 64049832, 70709184, 102958128, 124782336, 142254252, 189423360, 237588120, 248250240, 344391264
Offset: 0

Views

Author

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 + 756*x^2 + 4032*x^3 + 20412*x^4 + 604890*x^5 + 139860*x^6 + ...
G.f. = 1 + 756*q^4 + 4032*q^6 + 20412*q^8 + 60480*q^10 + 139860*q^12 + 326592*q^14 + 652428*q^16 + 1020096*q^18 + 2000376*q^20 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 129.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(3), 6), 29); A[1] + 756*A[3]; /* Michael Somos, Dec 20 2015 */
    
  • Maple
    # Jacobi theta constants th2, th3: maxd := 201: temp0 := trunc(evalf(sqrt(maxd)))+2: a := 0: for i from -temp0 to temp0 do a := a+q^( (i+1/2)^2): od: th2 := series(a,q,maxd); a := 0: for i from -temp0 to temp0 do a := a+q^(i^2): od: th3 := series(a,q,maxd);
    # get phi0 and phi1: phi0 := series( subs(q=q^2, th2)*subs(q=q^6, th2)+subs(q=q^2, th3)*subs(q=q^6, th3), q, maxd); phi1 := series( subs(q=q^2, th2)*subs(q=q^6, th3)+subs(q=q^2, th3)*subs(q=q^6, th2), q, maxd);
    K_12 := series( subs(q=q^2,phi0)^6+45*subs(q=q^2,phi0)^2*subs(q=q^2,phi1)^4+18*subs(q=q^2,phi1)^6,q,maxd);
  • Mathematica
    maxd = 51; temp0 = Floor[ Sqrt[maxd] ]+2; a = 0; Do[ a=a+q^(i+1/2)^2, {i, -temp0, temp0}]; th2[q_] = Normal[ Series[a, {q, 0, maxd}]]; a = 0; Do[ a=a+q^i^2, {i, -temp0, temp0}]; th3[q_] = Normal[ Series[a, {q, 0, maxd}]]; phi0[q_] = Normal[ Series[ th2[q^2]*th2[q^6] + th3[q^2]*th3[q^6], {q, 0, maxd}]]; phi1[q_] = Normal[ Series[ th2[q^2]*th3[q^6] + th3[q^2]*th2[q^6], {q, 0, maxd}]]; K12 = Series[ phi0[q^2]^6 + 45*phi0[q^2]^2*phi1[q^2]^4 + 18*phi1[q^2]^6, {q, 0, maxd}]; CoefficientList[ K12, q^2 ] (* Jean-François Alcover, Nov 28 2011, translated from Maple *)
    a[ n_] := With[ {U1 = QPochhammer[ q]^3, U3 = QPochhammer[ q^3]^3, U9 = QPochhammer[ q^9]^3}, With[ {z = (1 + 9 q U9/U1)^3}, SeriesCoefficient[ (U1^3/U3)^2 (3 z^2 - 4 z + 4) / 3, {q, 0, n}]]]; (* Michael Somos, Dec 25 2015 *)
  • PARI
    {a(n) = my(A, U1, U3, U9, z); if( n<0, 0, A = x * O(x^n); U1 = eta(x + A)^3; U3 = eta(x^3 + A)^3; U9 = eta(x^9 + A)^3; z = (1 + 9 * x * U9/U1)^3; polcoeff( (U1^3/U3)^2 * (3*z^2 - 4*z +4) / 3, n))}; /* Michael Somos, Dec 25 2015 */

Formula

G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = 27 (t/i)^6 f(t) where q = exp(2 Pi i t). - Michael Somos, Dec 20 2015
G.f.: (3*a(x)^6 - 4*a(x)^3*b(x)^3 + 4*b(x)^6) / 3 where a(), b() are cubic AGM theta functions. - Michael Somos, Dec 25 2015

A071687 Non-palindromic numbers such that either x=q1.Rev[x] or Rev[x]=q2.x, where R[x]=A004086[x] and q1 or q2 are integers not divisible by 10.

Original entry on oeis.org

510, 540, 810, 1089, 2100, 2178, 4200, 5200, 5610, 5700, 5940, 6300, 8400, 8712, 8910, 9801, 10989, 21978, 23100, 27000, 46200, 51510, 52200, 52800, 54540, 56610, 57200, 59940, 65340, 69300, 81810, 87912, 89910, 98901, 109989, 212100, 217800
Offset: 1

Views

Author

Labos Elemer, Jun 03 2002

Keywords

Examples

			Includes special cases of A071685. Examples represented by {n, Rev[n], integer-quotient} triples: {1089, 9801, 9}, {87912, 21979, 4}, {5610, 165, 34}, {610000, 16, 38125}, etc.
		

Crossrefs

Programs

  • Mathematica
    nd[x_, y_] := 10*x+y tn[x_] := Fold[nd, 0, x] ed[x_] := IntegerDigits[x] red[x_] := Reverse[ed[x]] Do[s=Mod[ma=Max[{n, tn[red[n]]}], mi=Min[{n, r=tn[red[n]]}]]; If[Equal[s, 0]&&!Equal[n, r] &&!Equal[Mod[ma/mi, 10], 0], Print[{n, r, Max[r/n, n/r]}]], {n, 1, 1000000}]

Formula

q=Max[n/Rev[n], Rev[n]/n]=10m+r integer, where r>0, q>1.
Showing 1-4 of 4 results.