A004062 Numbers k such that (6^k - 1)/5 is prime.
2, 3, 7, 29, 71, 127, 271, 509, 1049, 6389, 6883, 10613, 19889, 79987, 608099, 1365019, 3360347
Offset: 1
References
- J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 236.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers]
- Paul Bourdelais, A Generalized Repunit Conjecture. - _Paul Bourdelais_, May 24 2010
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930.
- H. Dubner, Generalized repunit primes, Math. Comp., 61 (1993), 927-930. [Annotated scanned copy]
- H. Lifchitz, Mersenne and Fermat primes field
- S. S. Wagstaff, Jr., The Cunningham Project
- Eric Weisstein's World of Mathematics, Repunit
- Index to primes in various ranges, form ((k+1)^n-1)/k
Programs
-
Mathematica
Select[Range[1000], PrimeQ[(6^# - 1)/5] &] (* Alonso del Arte, Dec 31 2019 *)
-
PARI
is(n)=isprime((6^n - 1)/5) \\ Charles R Greathouse IV, Apr 28 2015
Extensions
More terms from Kamil Duszenko (kdusz(AT)wp.pl), Jun 22 2003
a(14) discovered Nov 05 2007, corresponds to a probable prime based on trial factoring to 10^11 and Fermat primality test base 2. - Paul Bourdelais
a(15) corresponds to a probable prime discovered by Paul Bourdelais, May 24 2010
a(16) corresponds to a probable prime discovered by Paul Bourdelais, Dec 31 2019
a(17) corresponds to a probable prime discovered by Ryan Propper, Oct 30 2023
Comments