A004094 Powers of 2 written backwards.
1, 2, 4, 8, 61, 23, 46, 821, 652, 215, 4201, 8402, 6904, 2918, 48361, 86723, 63556, 270131, 441262, 882425, 6758401, 2517902, 4034914, 8068838, 61277761, 23445533, 46880176, 827712431, 654534862, 219078635, 4281473701, 8463847412, 6927694924, 2954399858, 48196897171
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Edge Foundation, Annual Question 2005
- Richard Lipton, More on testing Dyson's conjecture (2014)
- N. J. A. Sloane, Exciting Number Sequences (video of talk), Mar 05 2021.
Crossrefs
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).
Cf. A004086 (read n backwards).
For indices of primes see A057708.
Programs
-
Haskell
a004094 = a004086 . a000079 -- Reinhard Zumkeller, Apr 02 2014
-
Magma
[Seqint(Reverse(Intseq(2^n))): n in [0..35]]; // Vincenzo Librandi, Jan 22 2020
-
Maple
a:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||(2^n)): seq(a(n), n=0..50); # Alois P. Heinz, Jan 21 2020
-
Mathematica
Table[FromDigits[Reverse[IntegerDigits[2^n]]], {n, 0, 35}] (* Vincenzo Librandi, Jan 22 2020 *)
-
PARI
rev(n)=subst(Polrev(digits(n)),'x,10) a(n)=rev(2^n) \\ Charles R Greathouse IV, Oct 20 2014
-
PARI
apply( {A004094(n)=fromdigits(Vecrev(digits(2^n)))}, [0..44]) \\ M. F. Hasler, Feb 18 2021
-
Python
def A004094(n): return int(str(2**n)[::-1]) # Chai Wah Wu, Feb 19 2021
Formula
Extensions
More terms from Reinhard Zumkeller, Jan 05 2005
Comments