cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004108 Number of n-node unlabeled connected graphs without endpoints.

Original entry on oeis.org

1, 1, 0, 1, 3, 11, 61, 507, 7442, 197772, 9808209, 902884343, 153723152913, 48443147912137, 28363697921914475, 30996525982586676021, 63502034385272108655525, 244852545421597419740767106, 1783161611489937453151313949442, 24603891216883233547700609793901996
Offset: 0

Views

Author

Keywords

Comments

Also number of n-node unlabeled connected mating graphs, cf. A006024 and A092430 (conjectured by Vladeta Jovovic, proved by G. Kilibarda). - Vladeta Jovovic, Oct 07 2004

References

  • F. Harary and E. Palmer, Graphical Enumeration, (1973), formula (8.7.11).
  • Goran Kilibarda, "Enumeration of unlabeled mating graphs", Belgrade, 2004, to be published.
  • R. W. Robinson, personal communication.
  • R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1977.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A059166 (n-node connected labeled graphs without endpoints), A059167 (n-node labeled graphs without endpoints), A004110 (Euler Transform, n-node unlabeled graphs without endpoints).
Cf. A006024, A092430 (n-node labeled connected mating graphs).
See also A261919.
Counts include those for distance-critical graphs, A349402.

Programs

  • Mathematica
    terms = 19;
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
    b[n_] := Sum[permcount[p]*2^edges[p]*Coefficient[Product[1 - x^p[[i]], {i, 1, Length[p]}], x, n - k]/k!, {k, 1, n}, {p, IntegerPartitions[k]}];
    A004110 = Table[b[n], {n, 1, terms-1}];
    Join[{1}, EULERi[A004110]] (* Jean-François Alcover, Jan 21 2019, after Andrew Howroyd *)

Formula

Inverse Euler transform of A004110. - Andrew Howroyd, Sep 09 2018

Extensions

a(0)=1 prepended by Andrew Howroyd, Sep 09 2018