cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004134 Denominators in expansion of (1-x)^{-1/4} are 2^a(n).

Original entry on oeis.org

0, 2, 5, 7, 11, 13, 16, 18, 23, 25, 28, 30, 34, 36, 39, 41, 47, 49, 52, 54, 58, 60, 63, 65, 70, 72, 75, 77, 81, 83, 86, 88, 95, 97, 100, 102, 106, 108, 111, 113, 118, 120, 123, 125, 129, 131, 134, 136, 142, 144, 147, 149, 153, 155, 158, 160, 165, 167, 170, 172, 176, 178
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A004130.
Cf. A005187.

Programs

  • Mathematica
    Log2[ Denominator[ CoefficientList[ Series[ 1/Sqrt[Sqrt[1 - x]], {x, 0, 61}], x]]] (* Robert G. Wilson v, Mar 23 2014 *)
    f[n_] := 3 n - DigitCount[n, 2, 1]; Array[f, 62, 0] (* or *)
    a[n_] := If[ OddQ@ n, a[(n - 1)/2] + 3 (n - 1)/2 + 2, a[n/2] + 3 n/2]; a[0] = 0; Array[a, 62, 0] (* Robert G. Wilson v, Mar 23 2014 *)
  • PARI
    {a(n) = if( n<0, 0, 3*n - subst( Pol( binary( n ) ), x, 1) ) } /* Michael Somos, Aug 23 2007 */
    
  • PARI
    a(n) = 3*n - hammingweight(n); \\ Joerg Arndt, Mar 23 2014

Formula

a(n) = 3*n - A000120(n). Recurrence: a(2n) = a(n) + 3n, a(2n+1) = a(n) + 3n + 2. Proved by Mitch Harris, following a conjecture by Ralf Stephan.
a(n) = A005187(n) + n. - Cyril Damamme, Aug 04 2015